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Abstract

The issue of software correctness is a long-standing problem in the computer
science community, and it has always been relevant. Nowadays, even more so
with the software industry becoming increasingly aware of the importance and
benefits of formal verification. This comes as a consequence of realizing that
having mathematical proof of the correctness of software systems is more efficient,
even from an economical standpoint, than relying on a posteriori cycles of testing,
debugging and re-implementing.

However, formal verification is painstakingly hard: it is a discipline closely
connected to the semantic models on which programming languages are developed,
usually involving complex mathematics. As technology paces forward, developing
new logics to keep up becomes even harder. Since proving properties about
complex programs is hard, it is preferable to have to do their proofs at most once.
Unfortunately, this is not always possible.

The main goal of this thesis is the development and application of program
logics aimed at the modular verification of stateful programs with higher-order
control effects. In particular, it focuses of two different kinds of control effects:
sequential control, in the shape of continuations and higher-order control operators
like call/cc; and shared variable concurrency.

A continuation is a powerful abstraction which models the “future of a com-
putation”. The availability of higher-order control operators like call/cc make
this execution context first-class citizens of a programming language, allowing
client programs to have operational access (and control) over its execution context.
The ability to manipulate “the future” makes these operators more powerful
than plain goto-like instructions, but it also hinders the formal reasoning about
programs. The contribution of this thesis in this regard is the development of a
novel separation-like logic for the verification of higher-order stateful programs
featuring call/cc and abort control operators.

As to shared-memory (or shared-variable) concurrency, we live in a world of
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massively concurrent software systems running over increasing multi-processing
power. In such a context, it is natural to expect programmers—and thus pro-
gramming languages—to desire to exploit the available parallelism in order to
produce more efficient software. Unfortunately, the intricacies of concurrency
conspire against reasoning—both formally and intuitively—about the correctness
of algorithms.

The contribution of this thesis in this regard is Linking in Time, a novel
approach to specification of concurrent objects, in which the dynamic and non-local
aspects inherent to concurrency reasoning can be represented in a procedure-local
and thread-local manner. This technique has been formally mechanized in FCSL,
a fine-grained concurrent separation logic, and it has been applied to prove the
correctness of non-trivial concurrent objects with highly-speculative, non-obvious
correctness. The approach is similar in its goals to linearizability, but is carried
out exclusively using a separation-style logic to uniformly represent the state and
time aspects of the data structure and its methods.
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Resumen

La correctitud del software, es decir, el problema de decidir a ciencia cierta que
un algoritmo o un programa es correcto antes de su ejecución, es una cuestión de
larga data que siempre ha sido relevante en la comunidad de las Ciencias de la
Computación. En los últimos tiempos cada vez más, con la industria comprendiendo
la importancia y los beneficios de la verificación formal de software. Esto se produce
como consecuencia de descubrir—o aceptar—que desarrollar una prueba formal de
la correctitud de un sistema informático es una alternativa mucho más eficiente,
incluso desde un punto de vista meramente económico, a depender de ciclos a
posteriori de prueba, detección de errores y re-implementación.

Sin embargo, la verificación formal es una tarea extremadamente compleja:
es una disciplina muy cercana a los modelos semánticos sobre los cuales se
desarrollan los lenguajes de programación, involucrando usualmente modelos
matemáticos complejos. A medida que la tecnoloǵıa avanza, desarrollar nuevas
lógicas, o nuevas herramientas orientadas a la verificación de estos nuevos avances
se torna una empresa cada vez más dif́ıcil. Por otra parte, y dada la dificultad
que conlleva comprobar formalmente propiedades de programas complejos, o de
grandes sistemas, es preferible tener que hacer dichas demostraciones como mucho
una única vez. Desafortunadamente, esto no es siempre factible.

El objetivo principal de esta tesis es el desarrollo y la aplicación de lógicas
diseñadas espećıficamente para la verificación formal modular de programas con
efectos de control de alto orden. En particular, esta tesis hace foco en dos clases
diferentes de efectos de control: control secuencial, dado por construcciones como
las continuaciones y operadores de alto orden como call/cc; y concurrencia de
variables compartidas.

Una continuación es una abstracción que captura el contexto de ejecución de
un cómputo o programa, i. e. captura el “futuro de un cómputo”. Operadores de
control de alto orden como call/cc transforman a dichos contextos de ejecución
en objetos de primera clase de un lenguaje de programación, permitiendo a
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los programas en ellos implementados tener acceso (y control) operacional a
su contexto de ejecución. Esta capacidad de manipular “el futuro” convierte a
este tipo de operadores más flexibles y expresivos que operaciones de primer
orden que sólo permiten hacer saltos en la ejecución de un programa, e. g. goto
y similares. Pero, también implica que razonar formalmente sobre éstos sea más
complicado. La contribución de esta tesis en este sentido es el desarrollo de una
nueva lógica, inspirada en la Lógica de Separación (o Separation Logic) diseñada
para la verificación de programas de alto orden que utilizan operadores de control
como call/cc y abort.

En cuanto a la concurrencia con variables compartidas, nos encontramos en
presencia de sistemas masivamente concurrentes ejecutándose sobre capacidades
de multiprocesamiento cada vez mayores. En este contexto, es comprensible que los
programadores—y por lo tanto los lenguajes de programación—deseen explotar las
capacidades de paralelización existentes para producir programas más eficientes.
Desafortunadamente, la naturaleza misma de la concurrencia conspira en contra
de razonar—ya sea formal o intuitivamente—sobre la correctitud de algoritmos
concurrentes.

La contribución de esta tesis en este campo es Linking in Time, una nueva
técnica de especificación de objetos concurrentes en la cual los aspectos dinámicos
y no estructurales inherentes al razonamiento formal sobre concurrencia pueden ser
representados de forma modular, tanto al nivel de funciones o procedimientos como
al hilos de ejecución (threads). Esta técnica ha sido mecanizada formalmente en
FCSL, una lógica de separación para concurrencia no-bloqueante, y ha sido aplicada
para demostrar formalmente la correctitud de objetos concurrentes complejos,
cuyos argumentos de correctitud son intricados o altamente especulativos. Esta
técnica es similar en sus objetivos a linearizabilidad (linearizability) pero, se
desarrolla exclusivamente en una lógica de separación con el objetivo de capturar
uniformemente los propiedades de estado (o memoria) de una estructura de datos
concurrente, aśı como también expresar ciertos aspectos temporales.
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1
Introduction

An ever present challenge in formal verification, specially as it comes to stateful
reasoning, is modularity. But, not so much modularity of the programs themselves
as proof-modularity, that is, the possibility to reuse the proofs of correctness of
modular programs. Since proving properties of complex programs is hard, it is
preferable to have to do their proofs at most once. Unfortunately, this is not
always possible.

Although the state of the art has advanced significantly in this regard, most
logics for modular stateful reasoning address structured programming idioms. One
can even argue that a sequential mindset has driven the design of most logics for
stateful reasoning, making most of the latter developments unsuitable for modular
reasoning with programming constructs which implement higher-order control.

The main goal of this thesis is the development and application of dependent
type theories aimed at the modular verification of stateful programs with higher-
order control. As particular cases of programming idioms that have not, historically,
got along well with logics for reasoning modularly about state, the thesis will
focus on two: continuations and shared-memory concurrency. The premise is that
by developing such higher-order control features in a dependent type theory, one
can device the appropriate setting for the verification of program with complex
control in a proof-modular manner.

1.1 Overview

The issue of software correctness is a long-standing problem in the computer
science community, and it has always been relevant. Nowadays, even more so
with the software industry becoming increasingly aware of the importance and
benefits of formal verification. This comes as a consequence of realizing that having
mathematical proof of the correctness of software systems (or at least particular,
critical, smaller components) is more efficient, even from an economical standpoint,
than relying on a posteriori cycles of testing, debugging and re-implementing. The
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2 1.1. Overview

problem with formal verification is that it is closely connected to the semantic
models on which programming languages are developed, usually involving complex
mathematics. As technology paces forward, developing new logics to keep up
becomes even harder.

The state of the art in formal verification has become so mature a discipline
that its underlying theories are becoming not only a standard for reasoning with
computer programs but also, they are considered rigorous enough to undertake
the formalization of mathematics itself (Avigad & Harrison, 2014; Gonthier et al.
, 2013). However, there are fundamental questions still unanswered and, in this
thesis, I will address the issue of modularity in the context of stateful reasoning
with unstructured programming constructs.

The problem with modular formal verification of stateful programs is not only
the modularity of the programs themselves, but most importantly proof-modularity
i.e. the ability to reuse the proofs of correctness of modular programs at different
times. For instance, in the foundational development of Hoare Logic (Hoare, 1969)
the proofs for two modularly developed stateful programs e.g. a client and a server
for a complicated data structure could not be separated from each other. If at some
point the internal implementation of the data structure changed, it meant that the
proof for the whole system had to be redone including the one corresponding to
parts that remained invariant. Since then, the state of the art has made significant
advances with regards to modular verification, with Separation Logic (O’Hearn
et al. , 2001; Reynolds, 2002) becoming the gold standard for reasoning with
stateful, heap-manipulating computations, but with a steeper development in
reasoning with well-structured programs. Understandably, because the latter are
easier to reason with and have more accessible mathematical models.

As particular cases of intricate control flow constructs that have not, historically,
got along well with logics for reasoning modularly about state, this thesis will
focus on two: unstructured control flow and shared-memory concurrency.

Unstructured control flow is sometimes disregarded as a long-forsaken bad
engineering practise mostly because of the ill-famous goto command—or, more
precisely, due to Dijkstra’s admonishment of its abuse (Dijkstra, 1968). There
exists, however, further sensible programming constructs for unstructured control
flow, continuations being one of them. Continuations are powerful abstractions
that model the “future of a computation” (Reynolds, 1993). They have a ubiq-
uitous presence in programming languages: they allow for a family of program
transformation techniques in the style of many CPS transformations (Danvy
& Filinski, 1992), they underlie the denotational semantics of programs with
jumps (Felleisen et al. , 1988; Strachey & Wadsworth, 2000), they give computa-
tional content to classical proofs (Griffin, 1990), they have been used to structure
computational effects (Filinski, 1994; Hyland et al. , 2007) and also to design
compilation techniques (Appel, 1992). In spite of this, there has been little effort
towards developing verification logics for language with first class continuations.

As to shared-memory (or shared-variable) concurrency, we live in a world of
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Chapter 1. Introduction 3

massively concurrent software systems running over increasing multi-processing
power. In such a context, it is natural to expect programmers—and thus pro-
gramming languages—to desire to exploit the available parallelism in order to
produce more efficient software. Reasoning about concurrent programs is difficult
as it often entails considering all possible interactions between different threads.
Unfortunately, this forces verification experts to abandon the safe waters of the
sequential world where most of the advances for modular stateful reasoning have
been made.

In a more general perspective, the premise of this thesis is that the challenges
of software verification should be addressed in systems where the simultaneous
development of programs and their proofs can be carried out in an integrated way,
allowing that the same mechanisms for structuring and reuse be applied to both
software development and their proofs of correctness. By judiciously structuring
programs and proofs together, one can oversee that the proof burden introduced
by verification does not blow up, while at the same time create new abstractions
to reason with our programs.

Type Theories, in particular dependently-typed theories such as the one
underlying Coq (Bertot & Castéran, 2004; The Coq Development Team, 2016),
are strong, mature frameworks in which undertaking this task. In dependently-
typed theories, programs and their proofs are indivisible, dual manifestations of the
same phenomenon, namely the inhabitants of datatypes. Dependent Type theory
is modular and supports the higher-order features that unstructured programming
with higher-order control requires, but is usually purely functional i.e., there are
no computational effects. In such type theories, one could develop programs
and their correctness proofs, but the programs have to be purely functional and
terminating.

This is an undesirable restriction, for two reasons. First, Hoare-style reasoning,
as presented by Hoare Logic (Hoare, 1969) and Separation Logic (O’Hearn et al. ,
2001; Reynolds, 2002) assert partial correctness properties, i. e. the postconditions
hold if the program terminates and the—usually more complex—issue of termina-
tion is orthogonal. The second reason is that the high-order control effects that
we consider in this thesis allow for programming idioms in which non-termination
is natural, and we would not want to restrict ourselves to a total or terminating
fragment. There are however, suitable precedents of integrating stateful reasoning
and partial-correctness in the purely-functional, total setting of type theory, Hoare
Type Theory (Nanevski et al. , 2006, 2008b,a, 2010) being one of them.

HTT addresses the difficulty of reconciling theorem proving with impure
programming features by encapsulating sequential, stateful reasoning through
computational types. This encapsulation, however, is quite different from the usual
approach where one implements the abstract syntax of the programming language
of choice as a datatype in the meta logic, and then reasons about abstract syntax
trees. Instead, HTT uses Coq directly as a programming language, thus removing
a level of indirection. HTT has carried out the initial steps to incorporate stateful

3



4 1.2. Thesis Statement and Contributions

reasoning through effectful dependent type theories, but it has only considered one
effect: dynamic state in a sequential setting. This thesis considers this experience
to be a suitable stepping-stone to tame the verification of the high-order control
features described above. We propose to adopt HTT’s methodology to develop
new program logics and verification techniques for modular stateful reasoning
about continuations and shared-variable concurrency.

1.2 Thesis Statement and Contributions

The foremost objective of this thesis is the development and application of depen-
dent type theories aimed at the modular verification of stateful programs with
higher-order control effects. In particular, the thesis will focus on two separate
kinds of control effects: continuations and shared-memory concurrency.

To this end, the aim of this thesis is to extend the type underlying dependently-
typed theory of Coq with computational types which encapsulate the imperative
higher-order control features under study. This has been done before, in HTT,
but for a language with dynamic state in a sequential setting with no support
for reasoning with unstructured effects. However, since both continuations and
concurrency have been studied from a computational effects perspective (Hyland
et al. , 2007; Thielecke, 2009; Abadi & Plotkin, 2009), it is natural to expect that
those features can be embedded seamlessly into a dependent type theory, following
this methodology, and thus enabling modular stateful verification of unstructured
programming.

As we have discussed before, continuations are ubiquitous in the programming
languages community. Although the state of the art concerning formal reasoning
about them is vast, it has focused predominantly on the semantic modelling of
higher-order control operators and CPS transformations (Danvy & Filinski, 1992),
and verification of programs directly in the semantic model. In contrast, one of the
goals of this thesis is to develop a Hoare-style logic in which one can systematically
specify and verify full functional correctness of programs with higher-order jumps,
in the presence of dynamic mutable state and first class continuations i. e., where
continuations can be returned as the result of computations, stored in the heap or
passed as argument of high-order programs.

This thesis contribution in this regard is the development of HTTcc (Delbianco
& Nanevski, 2013), a higher-order type theory for verification of programs with
callcc control operators. HTTcc supports mutable state in the style of Separation
logic, and, to the best of our knowledge, is the first Hoare logic or type theory
to support the combination of higher-order functions, mutable state and control
operators.

As for shared-memory concurrency there are two well established styles of pro-
gram logics, customarily divided according to the supported kind of granularity of
program interference. Logics for coarse-grained concurrency such as O’Hearn et al.

4



Chapter 1. Introduction 5

’s Concurrent Separation Logic (CSL) (O’Hearn, 2007) restrict the interference
to critical sections only, but generally lead to more modular specifications and
simpler proofs of program correctness. Logics for fine-grained concurrency such as
Jones’ Rely-Guarantee (RG) (Jones, 1983) admit arbitrary interference, but their
specifications have traditionally been more monolithic.

The goal of this thesis in this regard is to identify the essential ingredients
required for compositional specification of concurrent programs, and combine them
in a novel way which reconciles the two approaches. A first step towards that goal
is the development of Fine-grained Concurrent Separation Logic (FCSL) (Nanevski
et al. , 2014a), presented in Chapter 3. The latter logic features a novel concept
of fine-grained concurrent resources which unify the best of the two worlds. These
are concurrent computations with shared memory which allow for a simple,
yet powerful, logical framework for uniform Hoare-style reasoning about partial
correctness of coarse- and fine-grained concurrent programs in the modularity-
friendly, well-behaved manner of CSL.

Another traditional school of thought in the field of concurrency verification,
relies on the use of different correctness criteria or consistency models to specify
the global behaviour of concurrent data structures, such as sequential consis-
tency (Lamport, 1977) or linearizability (Herlihy & Wing, 1990). These criteria
relate the concurrent history of the methods of a data structure with its sequential
behaviour, allowing to reason with them using sequential program logics as if they
were atomic—and therefore, there was no concurrency allowed. Library designers
are thus required to prove that every possible behaviour of a method of a data
structure satisfies the definition of the selected criterion.

Linearizability is the de facto correctness criterion for reasoning with modern
concurrent fine-grained data-structures (Herlihy & Shavit, 2008; Raynal, 2013;
Morrison, 2016). More precisely, for each concurrent history of an object, lin-
earizability requires that there exists a mapping to a sequential history, such
that the ordering of matching call/return pairs is preserved either if they are
performed by the same thread, or if they do not overlap. To prove linearizability,
one usually has to identify linearization points in programs or object methods,
showing that this particular point is the single, atomic, point where the effect of
the operation occurs. However, for certain classes complex, highly-scalable and
efficient concurrent objects, e. g. (Jayanti, 2005; Dodds et al. , 2015; Morrison &
Afek, 2013), proving them to be linearizable is not a straightforwards task: the
linearization points of their methods are not fixed by the structure of the programs
themselves, but rather depend on intricate interactions with the environment
( i. e. interference). Traditionally, verifying such objects requires a dedicated
metatheory (Turon et al. , 2013b; Liang & Feng, 2013; Henzinger et al. , 2013a),
e. g. supporting prophecy variables (Abadi & Lamport, 1988), capable of reasoning
about their highly speculative nature.

In contrast, this thesis proposes a different approach. In Chapter 4, we
introduce Linking in Time, a lightweight technique for the verification, in a
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concurrent separation logic, of complex concurrent objects with non-fixed, non-
regional and future-dependent linearization points. By relying on the expressive
power of FCSL, we are able to give them intuitive specification—and prove them
correct!—that hide the speculative reasoning about the environment from the users
of the logic. We build on the philosophy of FCSL, whereby relying upon simple,
but powerful, abstractions like partial commutative monoids (FCSL), histories,
and state transition systems it is possible prove tight specifications for concurrent
fine-grained data-structures that resemble those of its sequential counterparts.

1.3 Position

Hoare-style stateful reasoning through dependent types

Hoare Type Theory (Nanevski et al. , 2006, 2008b,a, 2010) has been a recent
development towards reconciling stateful reasoning with dependent type theories.
HTT formalizes Separation Logic (O’Hearn et al. , 2001; Reynolds, 2002) in a
dependently-typed setting, extending the purely-functional type theory underlying
Coq (Bertot & Castéran, 2004; The Coq Development Team, 2016) to integrate
Separation Logic into it. Its novelty is that its philosophy is quite different from
the usual approach where one implements the abstract syntax of the programming
language of choice as a datatype in the meta logic (a deep embedding), and then
reasons about abstract syntax trees. Instead, HTT is implemented as a shallow
embedding. This entails that HTT uses Coq directly as a programming language
and thus removes a level of indirection.

The encapsulated effectful programs are classified by means of Hoare types,
which also serve as specifications in the style of Separation Logic. A program
has a Hoare type {P}A {Q} if it is provably safe to run in a state satisfying
the precondition P , and either diverges, or terminates with a value of type A,
in a state satisfying the postcondition Q. Hoare types provide all the facilities
usually required for working in Hoare logic e.g. specifying an invariant for a
loop corresponds to providing a Hoare type for a recursive function. In such a
framework, one can develop higher-order stateful programs, carry out proofs of
their full functional correctness, and check the proofs mechanically. Programs and
proofs can be organized into verified libraries, fulfilling the premise that modular
programs should have modular, i.e. reusable, proofs.

All the logics and systems described above where designed to reason with
dynamic mutable state in a sequential setting and they do not consider other
computational effects beyond state. I propose to incorporate ideas for combining
effects from the computational effects community (Plotkin & Power, 2002; Hyland
et al. , 2007), and following HTT’s philosophy develop new dependent type theories
for stateful reasoning with continuations and concurrency.

6



Chapter 1. Introduction 7

Hoare-style logics for higher-order control

Crolard and Polonowski (Crolard & Polonowski, 2012) have recently developed a
Hoare logic for control operators, in which specifications are carried out in types.
While in this respect, the approach is similar to the one proposed in HTTcc
from the high-level point of view, there is a number of differences. For example,
Crolard and Polonowski only consider mutable stack variables with block scope,
but no pointers or aliasing. Procedures are not allowed to contain free variables,
and type dependencies contain first-order data only, such as natural numbers.
Berger (Berger, 2009) presents a first-order Hoare logic for callcc in an otherwise
purely functional language.

In contrast, I propose to follow HTT’s methodology in order to develop a
framework for Hoare-style reasoning with higher-order programs, control effects
and mutable, dynamic state. The first step towards that goal is HTTcc, a
dependent type-theory with first class continuations which uses computational
types indexed by pre- and postconditions as our specifications in the style of
Separation logic. Additionally, HTTcc features algebraic control operators, initially
introduced by Jaskelioff (Jaskelioff, 2009).

A conclusion from this experience is that algebraic operators require less
manual program annotations, than the non-algebraic variants. Consequently,
HTTcc eases the verification of significant examples involving complicated data
structures, solving further issues than just providing a sound rule for the control
operators.

Program Logics for Shared-variable Concurrency

We have mentioned before that logics for shared variable concurrency can be
classified in two families, grouped by the granularity of the interference allowed
between concurrent threads.

Program logics for coarse-grained concurrency, such as Concurrent Separation
Logic (CSL) (O’Hearn, 2007; Brookes, 2007), employ shared resources and asso-
ciated resource invariants (Owicki & Gries, 1976), to abstract the interference
between threads. A resource r is a chunk of shared state, and a resource invariant
Inv is a predicate over states, which holds of r whenever all threads are outside
the critical section. By mutual exclusion, when a thread enters a critical section
for r, it acquires ownership and hence exclusive access to r’s state. The thread
may mutate the shared state and violate the invariant Inv , but it must restore
Inv before releasing r and leaving the critical section.

Program logics for fine-grained concurrency, such as Jones’ Rely-Guarantee
(RG) (Jones, 1983) and its successors (Vafeiadis & Parkinson, 2007; Liang & Feng,
2013) admit arbitrary interference i.e., threads can read or write on shared variables
at any time. The interaction between threads is directly specified by rely and
guarantee transitions on states. A rely specifies the thread’s expectations of state
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8 1.3. Position

transitions made by its environment. A guarantee specifies the state transitions
made by the thread itself. RG is more expressive than CSL because transitions can
encode arbitrary protocols on shared state, whereas CSL is specialized to a fixed
mutual exclusion protocol on critical sections. But, CSL is more compositional in
the manipulation of concurrent resources. Where a CSL resource invariant specifies
the behaviour of an individual chunk of shared state, the atomic transitions in
RG treat the whole state as monolithically shared.

This thesis aims to identify the essential ingredients required for compositional
specification of concurrent programs, and combine them in a novel way to reconcile
the two approaches. A first step towards that goal is the development of fine-
grained resources (Nanevski et al. , 2014a; Ley-Wild & Nanevski, 2013). A
fine-grained resource is specified by a resource invariant, as in CSL, but it also
adds transitions in the form of relations between resource states. These transitions
characterize the possible changes the threads can make to the shared state. In
Chapter 3, we present FCSL a logic designed specifically towards this goal.

Correctness Criteria for Fine-grained Concurrent Objects

As we have mentioned before, linearizability is the de facto gold standard for
reasoning with modern concurrent fine-grained data-structures. There has been
a long line of research on establishing linearizability using forward-backwards
simulations (Schellhorn et al. , 2012; Colvin et al. , 2006, 2005). These proofs
usually require a complex simulation argument and are not modular, because they
require reasoning about the entire data structure implementation, with all its
methods, as a monolithic state-transition system. However, for certain complex
concurrent objects, proving them to be linearizable is not a straightforwards
task: the linearization points of their methods are not fixed by the structure of
the programs themselves, but rather depend on intricate interactions with the
environment. Traditionally, verifying such objects requires a dedicated metathe-
ory (Henzinger et al. , 2013a; Chakraborty et al. , 2015), e.g. supporting prophecy
variables, capable of reasoning about their highly speculative nature.

Instead, we propose the Linking in Time of atomic events. The technique we
present in Chapter 4 allows us to specify and verify algorithms whose linearizability
argument requires speculations, i. e., depends on the dynamic reordering of events
based on run-time information from the future. The twist is that this technique
can be surprisingly implemented off-the-shelf in existing program logics by allowing
certain internal (i. e., not observable by clients) manipulations of the auxiliary
state. The key realization comes from identifying linearization points as pointers
in time, which can be manipulated as fairly standard auxiliary state in a concurrent
separation-like logic. Modular reasoning is then achieved by means of separately
proving properties of specific transitions of these state transition systems in FCSL,
and then establishing specifications of programs, composed out of well-defined
atomic commands, following the transitions, and respecting the STS invariants.

8



Chapter 1. Introduction 9

1.4 Structure of the thesis manuscript

The contributions of this thesis are twofold, and hence this document is struc-
tured to reflect the somewhat parallel nature of its contributions. Thus, Part I is
concerned with the development of HTTcc, a Hoare-style logic for higher-order
(sequential) control effects, and Part II is concerned with shared-memory concur-
rency, introducing Linking in Time and FCSL. Part III presents the conclusions
of the thesis and discusses possible future work. Concretely:

Chapter 2 presents the first contribution of this thesis: a higher-order HTT for
verification of programs with call/cc and abort control operators (Del-
bianco & Nanevski, 2013). The chapter explains the design and the imple-
mentation of the program logic—called HTTcc—and also it illustrates how
to put the framework to work in order to verify a number of characteristic
examples. To the best of our knowledge, this is the first Hoare-style logic
for verification of higher-order programs with higher-order jumps.

Chapter 3 presents fine-grained concurrent resources (Nanevski et al. , 2014a), a
novel model for scalable shared-variable concurrency verification and FCSL,
a logic and verification framework which enables proof modular verification
of complex concurrent data structures.

Chapter 4 presents Linking in Time (Delbianco et al. , 2017a), a technique
implemented on top of FCSL, for reasoning about concurrent objects with
non-fixed, future-dependent linearization points. We illustrate the method
by verifying (mechanically in Coq) an intricate optimal snapshot algorithm
due to Jayanti (Jayanti, 2005), together with some concurrent clients of the
snapshot data structure.

Chapter 5 summarizes the contributions of this thesis and discusses several inter-
esting open questions and some possible lines of future research directions.

1.4.1 Changes & Future Editions

In addition to general polishing, this version of the draft presents the following
changes from the previous one:

• The holes in Chapter 3 have been completed to include a full account of
FCSL semantics (Section 3.4), a sub-section on the structural rules of the
logic (Section 3.2.2), and the Related Work (Section 3.5) has been revised.

• In Chapter 4, the Related Work 4.10 has been updated to discussed recently
published developments in linearizability reasoning (Bouajjani et al. , 2017).

However, this thesis draft is still a work in progress. I intend to do the following
changes to subsequent versions of this manuscript:

9



10 1.4. Structure of the thesis manuscript

• The Introduction needs to be polished. Moreover, I plan to introduce
examples to motivate the methodology of this thesis—i. e. the use of types
as a vehicle for implementing program logics— and incorporate some general
background from Hoare Type Theory (HTT), and on program logics in
general.

• I envision the following improvements for Chapter 2:

1. Expand the Overview section, Section 2.2, introducing simpler examples
building up to inc3, the only example used in the opening of the original
paper to introduce and motivate HTTcc.

2. Expand the Discussion section, Section 2.7 with a more thorough
description of the related work.

3. Incorporate two more examples which have been verified in Coq and
have not been included in the original manuscript.

4. Add a detailed explanation for the proof outline for ping–pong in
Section 2.6.

5. Explain the alternative implementation of roll-backing control operators,
together with an example.

• A comparisson with the new version of FCSL, currently in submission, should
be included in the relevant Chapters.
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Preamble

Continuations are programming abstractions that allow for manipulating the
future of a computation. Among their many applications, they enable implement-
ing unstructured program flow through higher-order control operators such as
call/cc. Hoare-style logics for the verification of control structures have focused,
traditionally, only on first-order jumps i.e. plain goto and label commands (Cro-
lard & Polonowski, 2012; Audebaud & Zucca, 1999; Arbib & Alagic, 1979; Tan &
Appel, 2006), which can be implemented as a special—i. e. simplified—case of
call/cc.

This part of this thesis presents, a new Hoare-style logic for the verification of
programs with higher-order control, in the presence of dynamic, mutable state.
This is done by designing a dependent type theory with first class callcc and
abort operators, where pre- and postconditions of programs are tracked through
types, building upon the lessons from Hoare Type Theory for sequential stateful
reasoning. Moreover, the control operators are algebraic in the sense of Plotkin
and Power (Plotkin & Power, 2004, 2003), and Jaskelioff (Jaskelioff, 2009), to
reduce the annotation burden and enable verification by symbolic evaluation.

The resulting logic, which we call HTTcc, is implemented as a shallow-
embedding in Coq, providing a unified framework in which to mechanize the
meta-theory of the logic as well as its case studies. In order to further illustrate
the latter point, we present the verification of a number of characteristic exam-
ples, featuring typical programming idioms using call/cc. To the best of our
knowledge, HTTcc is the first Hoare-style logic for verification of higher-order
programs with higher-order jumps.

The contents of this part of the thesis have been published in the following
paper:

• Germán Andrés Delbianco and Aleksandar Nanevski. Hoare-style rea-
soning with (algebraic) continuations. In Morrisett, G. and Uustalu, T.,
editors, ACM SIGPLAN International Conference on Functional Program-
ming, ICFP’13, Boston, MA, USA - September 25 - 27, 2013, pages 363–376.
ACM.

The contents of this part extend the original paper (Delbianco & Nanevski,
2013) by incorporating the appendices from the extended version of the paper,
more examples and an updated and more thorough discussion of related work.
The mechanization of HTTcc in Coq, together with the implementation of the
case studies, is available online (Delbianco & Nanevski, 2017).
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2
Hoare-style Reasoning with (Algebraic)

Continuations

2.1 Introduction

Continuations are powerful abstractions that model the “future of a compu-
tation” (Reynolds, 1993). They have a ubiquitous presence in programming
languages: they allow for a family of program transformation techniques in the
style of many CPS transformations (Danvy & Filinski, 1992), they underlie the
denotational semantics of programs with jumps (Felleisen et al. , 1988; Strachey
& Wadsworth, 2000), they give computational content to classical proofs (Griffin,
1990), they have been used to structure computational effects (Filinski, 1994;
Hyland et al. , 2007) and also to design compilation techniques. Moreover, certain
programming languages provide first-class control operators which manipulate
continuations, e.g. the variants of call/cc in Scheme, ML and Haskell, or the
related C and F control operators (Felleisen et al. , 1986, 1987).

The ability to manipulate “the future” makes these operators more powerful
than plain goto-like instructions, but it also hinders the formal reasoning about
programs. Although the state of the art concerning formal reasoning about
continuations is vast, it has focused predominantly (with notable exceptions
discussed below) on the semantic modelling of higher-order control operators
and CPS transformations (Felleisen et al. , 1986; Griffin, 1990; Danvy & Filinski,
1992; Thielecke, 1997), and verification of programs directly in the semantic
model (Støvring & Lassen, 2007; Dreyer et al. , 2010).

In contrast, we are interested in developing a Hoare-style logic in which one
can systematically specify and verify full functional correctness of programs with
higher-order jumps, in the presence of dynamic mutable state and the ability to
capture continuations and return them as results of computations, potentially
encapsulated into closures.

The ability to capture and return continuations makes our task more diffi-
cult when compared to the previous work on Hoare logics for first-order jumps
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16 2.1. Introduction

(i.e. gotos) in high-level languages (Clint & Hoare, 1972; Kowaltowski, 1977; Au-
debaud & Zucca, 1999; Arbib & Alagic, 1979) and low-level machine code (Saabas
& Uustalu, 2007; Tan & Appel, 2006; Jensen et al. , 2013). In particular, the
higher-order nature of call/cc entails the need for a Hoare logic capable of
reasoning about (potentially higher-order) functions. It also makes it somewhat
more difficult to design the specification methodology, i.e. decide on just what
kind of information should the proof developer provide in the form of annotations
when specifying a program involving call/cc, and how should that information
relate the context in which the continuation is captured to the context in which it
is invoked.

The presence of dynamic state significantly complicates matters, and differ-
entiates our work from recent Hoare-style logics for higher-order jumps (Berger,
2009; Crolard & Polonowski, 2012). From the semantic point of view, support-
ing dynamic state requires building a model in which executing a continuation
does not roll back the mutable state to the point at which the continuation is
captured. From the specification point of view, it requires reconciling call/cc

with Separation logic (O’Hearn et al. , 2001; Reynolds, 2002). In this work, we
accomplish the task in a novel manner, combining Separation assertion logic with
large footprint semantics and large footprint inference rules for verification in the
style of symbolic evaluation.

More concretely, our contribution in this part of the thesis is the development
of HTTcc, a framework for Hoare-style reasoning with higher-order programs,
control effects and mutable, dynamic state. To the best of our knowledge, this
is the first formal system for reasoning about such combination of features. We
define a dependent type-theory with first class continuations which uses monadic
types indexed by pre- and postconditions as our specifications in the style of
Separation logic. This has been done before for a language with state, e.g. in
Hoare Type Theory (HTT) (Nanevski et al. , 2008a, 2010), but now we extend the
approach to a language with continuations. In particular, we rely on dependent
records (i.e. iterated Σ-types) as an essential tool for specification of programs
which “capture the continuation” in a closure that is later invoked.

In order to make specification and verification in HTTcc more palatable, we
focus on a specific choice of control operators which are algebraic in the sense of
Plotkin and Power (Plotkin & Power, 2004, 2003) and Jaskelioff (Jaskelioff, 2009);
that is, the control operators commute with sequential composition. We argue
that the algebraic control operators are less burdensome for verification than the
non-algebraic alternatives, because in practice they require less annotations to
be manually provided by the user. In particular, the algebraic call/cc typically
requires manual description of only the jumping behaviour of the code, whereas,
in our experience, the non-algebraic variants require manual description of both
the jumping and the normal termination of the call/cc block.

To test our design in practice, we have implemented HTTcc as a shallow
embedding in the Calculus of Inductive Constructions (CIC), as realized in
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Chapter 2. Hoare-style Reasoning with (Algebraic) Continuations 17

1. {x 7→ v}
2. c← callcc f. ret (abort f (x := !x+ 1 ; ret (ret ( ))));

3. {x 7→ v f {x 7→ v + 1 } c {⊥} g
x 7→ v + 2 f {x 7→ v + 3 } c {x 7→ v + 3}}

4. x := !x+ 1 ;

5. {x 7→ v + 1 f {x 7→ v + 1 } c {⊥} g
x 7→ v + 3 f {x 7→ v + 3 } c {x 7→ v + 3}}

6. c

7. {x 7→ v + 3}

Figure 2.1: An idealized proof outline for inc3, implementing a backwards or
re-entrant jump. Notice the use of nested Hoare triples to cope with the high-
order nature of this function: c, the return value of the callcc call in line 2 is a
computation, executed later at line 6.

Coq (The Coq Development Team, 2016; Bertot & Castéran, 2004) and Ssre-
flect (Gonthier et al. , 2008). We have mechanized its denotational semantics and
soundness proofs and used the framework to verify a survey of standard examples
which cover the usual continuation idioms. A subset of the examples is presented
in Section 2.6. All of our Coq code is available on-line (Delbianco & Nanevski,
2017).

2.2 Overview

The language of HTTcc uses monads, as in Haskell, to separate the purely
functional and the imperative fragment of the language. In addition to capturing
continuations via callcc and jumping to them via abort, the imperative fragment
supports recursion (which we consider a side effect), and heap-mutating commands
such as allocation, deallocation, reading from and writing into heap locations. We
use ret v for a monadic command returning a value v, and x← e1; e2 for monadic
bind (i.e. a sequential composition), which first executes e1, then binds the return
result to x before executing e2. We abbreviate with e1; e2 when x /∈ FV (e2). As
customary with monadic languages, we assume that a command is evaluated
only upon being bound in a sequential composition. Until then, the command’s
execution is suspended.
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18 2.2. Overview

2.2.1 Algebraicity

As our callcc and abort are non-standard, we briefly illustrate them by example.
Figure 2.1 shows an informal proof outline—in a style of partial correctness Hoare
logic or Separation logic—for a function inc3, which uses a backward jump to
increment the value of pointer x by 3. Our actual syntax for inc3, and the manual
assertions needed for its specification, will be introduced in Section 2.2.3. We first
discuss the behaviour of the function, and then return to the proof outline.

In the first command (line 2), inc3 captures the continuation, which, at that
point, is λ c. x := !x+ 1; c, corresponding to the code in lines 4− 6, with the
variable c abstracted. The continuation is encapsulated inside a continuation object
f , which may be viewed as a label for jumps. Next, the body of callcc is executed,
and the suspended command abort f (x := !x + 1; ret (ret ( ))) is bound to
c.1 The program continues by incrementing x (line 4), after which c follows
(line 6). Execution of c causes a jump to the continuation encapsulated inside f .
However, before the control is passed to the continuation, the second argument of
abort—x := !x+ 1; ret (ret ( ))— is executed. Thus, x is incremented again,
and ret ( ) is passed as the argument c to the continuation encapsulated inside f .
Passing the control to the continuation corresponds to a backward jump to line 4.
Thus, x is incremented once again, followed by execution of c. Since the latter
variable is now bound to ret ( ), its execution falls through and inc3 returns ( ),
after having incremented x three times.

The non-standard aspect of our control operators is that abort allows ex-
ecuting arbitrary side-effectful command—in the above case x := !x + 1—as
part of performing the jump. This is different from the customary callcc and
throw (Moggi, 1989; Thielecke, 2009; Wadler, 1994), as the latter only passes a
value upon a jump. We refer to this side-effectful command as finalization code,
as it is executed immediately before the jump, thus ending the normal control flow.
Obviously, throw can be mimicked by abort by using a trivial finalization code
which immediately returns. Dually, abort f e can be implemented by sequential
composition which executes e, followed by throwing the obtained value to f .

However, choosing abort as a primitive, awards special status to the fi-
nalization code, which makes the control operators algebraic (Jaskelioff, 2009;
Plotkin & Power, 2004, 2003). More concretely, callcc commutes with sequential
composition, a property we use in Section 2.4 to formulate a methodology for
Hoare-style specification and verification by symbolic evaluation. We illustrate
how the commutation arises by the following equations, which can be derived

1As usual with monads, the binding strips the outer ret.
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Chapter 2. Hoare-style Reasoning with (Algebraic) Continuations 19

from Jaskelioff (Jaskelioff, 2009).

x← (callcc f. e1); e2 = callcc g.x←[(g.x. e2)/f ]e1; e2 (2.1)

abort (g . x. e2) e1 = abort g (x← e1; e2) (2.2)

where g . x. e2 ,λ t. g (x← t; e2)

Consider equation (2.1). The continuation captured inside f on the left side of
the equation includes e2. On the right side, callcc has been commuted out of the
scope of x, and thus e2 cannot be part of the continuation captured inside g. To
induce that the expressions on the two sides of equality behave the same, jumps to
g on the right side must be preceded by an execution of e2. Because our primitives
provide for finalization code, we could enforce such a discipline by using e2 as
finalization code for every abort to g. This is achieved by uniformly substituting
f in e1 with a new continuation object g . x.e2. The new object is engineered so
that aborting to it object behaves like aborting to g with the finalization code
extended by e2, as captured in equation (2.2). Thus, execution of e2 precedes the
jumps to g, just as required.

2.2.2 Proof outline

As customary in Separation Logic, heaps are finite maps from the type ptr of
pointers (isomorphic to N) to values. The predicate x 7→ v holds only of a
singleton heap with a pointer x, storing the value v. We use f , g , for point-wise
conjunction and disjunction of heap predicates, and > and ⊥ for the always true
and always false predicate, respectively. In subsequent examples, we will also use
separating conjunction P ∗Q, which holds of a heap h if h can be split into disjoint
parts satisfying predicates P and Q, respectively. We will also use the predicate
this h, which holds only of heaps equal to h. We write P h or alternatively, h ∈ P ,
when the predicate P holds of the heap h. We retain ∧, ∨, True and False for the
customary propositional (i.e., non-separation) connectives.

Referring to Figure 2.1, the line 1 states that the program starts with the
initial heap containing a pointer x storing the integer v (though we omit the type
annotations). HTTcc uses large footprint annotations which describe the full heap
in which the program runs, rather than just a subheap that the program needs
(in contrast to the small footprint annotations from Separation logic). Thereby,
the proof outline in Figure 2.1 describes the behaviour of inc3 when the heap
contains exactly the pointer x storing v, but no other pointers. For now, we
restrict ourselves to this simple case in order to focus on algebraicity, but we
explain in Section 2.3 how to generalize the annotations of inc3 to cover larger
heaps.

Going back to Figure 2.1, at line 3, after the continuation is captured in line
2, the current heap is unchanged, but the program variable c is bound to the
command abort f (ret (ret ( ))), which itself has to be specified. The Hoare
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triple {x 7→ v + 1} c {⊥} indicates that c should be executed only after x is
incremented (precondition x 7→ v + 1), and that the execution of c causes a jump
(postcondition ⊥). This behaviour precisely corresponds to the intended use for
c in line 6. However, as c in line 6 executes a backward jump, the assertion in
line 3 has to describe the state right after the jump, but before the program
proceeds with executing line 4 for the second time. This is the role of the second
disjunct in line 2. It shows that the program point is reached for the second
time with x incremented twice. As described in Section 2.2.1, at that point c is
bound to ret ( ), and can be specified by {x 7→ v + 3} c {x 7→ v + 3} to indicate
that this second instance of c will be executed after x is incremented once more
(precondition x 7→ v + 3). The second execution of c does not jump, but falls
through with the heap unchanged (postcondition x 7→ v + 3).

After x is incremented in line 4, the assertion in line 5 accounts for the change
in the heap: compared to line 3, the value of x is incremented in both disjuncts,
while the specifications for c remain unchanged. Now, command c is safe to execute
in line 6, because the heap in both disjuncts satisfies the respective preconditions
for c. The program terminates satisfying x 7→ v+ 3 (line 7), which is a disjunction
of the postcondition of c from line 5.

2.2.3 Proof annotations as dependent types

The crucial point in the proof outline for inc3 is deciding on the specifications for
c in line 3, which indicate the intended use of c in the rest of the program (i.e., c
is executed when x stores v + 1 and v + 3, jumping in the first case, and falling
through in the second). Such specifications depend on the structure of the rest
of the program, and cannot be gleaned solely from the body of callcc in line 2.
In this paper, we adopt the approach that such information is provided by the
programmer in the form of annotations. This is similar to the way loop invariants
often have to be provided when verifying structured programs. In HTTcc, we
use type annotations for this purpose. However, because the annotations clearly
depend on run-time values (e.g., the contents of the pointer x in Figure 2.1), we
have to use dependent types.

In particular, HTTcc features two type constructors which we use to provide
annotations for side-effectful programs and for continuation objects. Intuitively,
the type SK∗ {P}A {Q} classifies programs with precondition P , postcondition Q
and return value of type A. The type Kont∗ {R}{P}A {Q} classifies continuation
objects. R describes what holds when the continuation is captured by callcc, and
is referred to as the initial condition. Precondition P describes what must hold
of the heap when aborting to the continuation object; thus immediately before
the finalization code is executed. postcondition Q describes the heap and the
value obtained after the execution of the finalization code, but before the actual
jump. In both types, the assertions R, P and Q may depend on program values.
Additionally, Q may depend on the dedicated variable r:A, naming the return
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inc3 (x:ptr) : [v ]. SK∗ {x 7→ v} ( ) {x 7→ v + 3} ,
do c← callccj

f : [v ].Kont∗ {j ∈ x 7→ v} {x 7→ v + 1} Σ•SK ( )

{r. x 7→ v + 2 f spec rv (x 7→ v + 3, x 7→ v + 3)∗}.
do (ret [abort f (x := !x+ 1 ; ret [ret ( )])])

: [v ]. SK∗ {x 7→ v f j ∈ x 7→ v}Σ•SK ( )

{r. x 7→ v f spec rv (x 7→ v + 1,⊥)∗};
x := !x+ 1 ;

cmd c.

Figure 2.2: Specification of inc3 via type annotations.

value.

We employ the notation [v1 :A1 , . . . , vn :An ]. SK∗ {P}A {Q}, often omitting
the types Ai, to specify that v1, . . . , vn are variables that may scope through P
and Q (and similarly for R, P and Q in Kont∗ types). In Hoare logic terminology,
such variables are known as logical ; they may appear in assertions, but not in the
code. In first-order Hoare logics, logical variables have global scope and are used
to relate the initial and ending states of a computation. In our setting, the scope
of logical variables is local to the type in which they are bound. This is required
in any Hoare logic for a language with procedures and recursion (Kleymann, 1999)
such as HTTcc, where a logical variable used in the specification of a recursive
procedure, may have to be instantiated differently to satisfy the preconditions of
different recursive calls.

Additionally, we employ a dependent record type Σ•SKA, which packages a
precondition and a postcondition together with a computation, and thus abstracts
existentially over them. In other words, a value of type Σ•SKA is a structure of the
form [P,Q, e], where e : SK∗ {P}A {Q}. As we show subsequently, values of this
type will be used whenever we “nest” the monadic types, i.e. build computations
that return other computations, which may potentially capture continuations.
Given c : Σ•SKA, we will use spec c and cmd c to project the components when
necessary:

spec : [P,Q, e] 7→ (P,Q)

cmd : [P,Q, e] 7→ e

We will abuse the notation and write [e] instead of [(P,Q), e], as the Hoare triple
type of e—and hence its P and Q components—can usually be inferred, as we
describe in Section 2.4. We will also use the symbol v to denote the usual Hoare
ordering (i.e., pre-strengthening/post-weakening) on pairs (P,Q).
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We now present in Figure 2.2 the fully annotated version of inc3, as it is
written in HTTcc. Apart from the obvious typing annotations and the explicit
use of the aforementioned constructors and projections for Σ•SK ( ), there are
additional syntactic elements that did not appear in Figure 2.1. We use the
expression do e : SK∗ {P}A {Q} (potentially with logical variables) whenever
we want to explicitly ascribe the specification (P,Q) to e, rather than use the
tightest specification that the system infers for e. Such ascription will entail a
proof obligation that (P,Q) is valid for e, as we explain in Section 2.4. When
the type ascription is explicitly bound to a variable x, we write x : SK∗ {P}A
{Q},do e.

We also make explicit that callcc captures the current heap, in addition to
the current continuation, through the heap variable j that is bound by callcc
and which we declare as an index (e.g., callccj). The variable j scopes over the
whole callcc body, including the type of the continuation object f . However, it is
introduced strictly for purposes of specification, and we shall use it only in the
annotations, but not in the executable code over which it scopes. The role of j is
to relate the values of the various logical variables in its scope. In Figure 2.2, e.g.,
the assertion j ∈ x 7→ v appears in the type of the continuation object f and in
the type of the body of callcc, thus implying that the (distinct) logical variables
named v in the two types, in fact denote the same value – that stored in x at the
entry to callcc. In Figure 2.1 we used a single global logical variable v for this
purpose, but, as explained, global logical variables do not scale to Hoare-style
reasoning about procedural languages.

Figure 2.2 uses the constructor [ ] twice. Once around c1 = abort f (x :=
!x+ 1 ; ret [ret ( )]) and again around c2 = ret ( ), which is embedded inside c1.
As explained in Section 2.2.1 at different points of execution, both c1 and c2 are
assigned to the variable c, and thus, all three must have the same type. Because
the Hoare types of c1 and c2 actually differ in the pre- and postconditions, we
employ [ ] to abstract over the whole specifications, coercing c1 and c2 to Σ•SK( ).
The individual specifications of c1 and c2 are then re-established using the spec r
projection in other program annotations.

For example, [c1] is the return value of callcc. The explicitly ascribed SK∗

type states that spec rv (x 7→ v + 1,⊥)∗, exposing that c1 performs a jump and
should be executed only when x is incremented once.2 On the other hand, [c2]
is the value of the finalization code of the abort to f in c1. Hence, the variable
r in the postcondition of f ’s type stands for [c2], and the formula spec r v (x 7→
v + 3, x 7→ v + 3)∗ in f ’s postcondition exposes that c2 does not change the state,
but should be executed only when x is incremented by 3. The types of f and the
callcc body in Figure 2.2 explicitly provide the required information about the
intended uses of the code bound to c at various execution points. Indeed, the
postconditions of these two types are essentially the two disjuncts from line 3,

2The reader can ignore the operation (−)∗ for now; it will be defined in Section 2.3.
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Figure 2.1, with the formulas involving spec r replacing the Hoare triples over c.
In this sense, the spec projection out of the record type Σ•SK represents Hoare
triples when they are nested, i.e. used within the assertions of other Hoare triples.

It is important, however, that the two disjuncts in line 3, Figure 2.1 are
specified in two different places in inc3 from Figure 2.2. In particular, the type of
f provides the disjunct describing what happens when f is jumped to, whereas the
inner type ascription provides the disjunct describing the normal return value of
the callcc block. This pattern whereby f specifies only the jumping behaviour is
characteristic of the algebraic callcc operator. On the other hand, as we shall see
in Section 2.6, the annotations describing the non-jumping behaviour in the body
of callcc can often be inferred (though in the case of inc3 we had to explicitly
ascribe them because the return value nests a jump). In the non-algebraic case, in
our experience, f has to always be manually annotated with the full disjunction
of the jumping and non-jumping cases, resulting in larger and more cumbersome
annotations and proofs.

2.3 Notation, logical variables, large footprint

In the previous sections we have given an informal presentation of HTTcc. In this
section we will present the typing rules for the HTTcc language together with the
properties and lemmas that constitute our verification framework. Furthermore,
we will present the interpretation of algebraicity in our setting, and we will show
how to use algebraicity for deriving verification lemmas that will allow us to
structure the proofs by symbolic evaluation.

While logical variables are very useful in specifications, they are somewhat
inconvenient to work with in the meta-theory. The main hindrance is that
premises of inference rules may contain Hoare triples with differing contexts of
logical variables, which have to coalesce in some way into a logical context of the
Hoare triple in the conclusion. Typically, simple conjoining of contexts is not
what is wanted, as some sharing of variables is desired. But then, it becomes
problematic how to specify just exactly which variables should be shared in the
conclusion, and which should not. To circumvent the issue, in this section we
introduce SK and Kont types which do not use logical variables at all, and show
how SK∗ and Kont∗ types with logical variables from Section 2.2, become merely
notational abbreviations.

As a first step, we introduce the type SK A (P, Q) of effectful computations
where P is a precondition over heaps, as discussed in the previous section, but Q is
a binary postcondition, ranging over the ending result of the program (of type A)
and the initial and ending heaps, much as in VDM-style specifications (Bjørner &
Jones, 1978; Nanevski et al. , 2010). We use CIC-style notation to classify logical
propositions by the type Prop, and represent predicates as functions into Prop.
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24 2.3. Notation, logical variables, large footprint

Definition 2.1 (A-specs). Given P : preT and Q : postTA an A-specification, or
A-spec, is a pair (P,Q) : specTA with:

preT , heap→ Prop

postTA , A→ heap→ heap→ Prop

specTA , preT × postTA

The notation [∆]. SK∗ {P}A {Q} from Section 2.2, with unary {P} and {Q}
is an abbreviation, as we illustrate next.

Example 2.2. The type [v ]. SK∗ {x 7→ v} ( ) {x 7→ v + 3} of inc3 from Figure 2.2,
is an abbreviation of the specification:

SK ( ) (λ i.∃ v. i ∈ x 7→ v, λ r im. ∀ v. i ∈ x 7→ v → m ∈ x 7→ v + 3)

The SK type introduces an explicit quantification over v in the precondition to
guarantee that inc3 is safe to execute in the heap containing (only) the pointer x.
The universal quantification in the postcondition expresses that upon termination,
the value pointed to by x is incremented by 3. To express this property, the
precondition x 7→ v has to be repeated as part of an implication in the binary
postcondition, which is obviously cumbersome, thus motivating the following
notation, generalizing to a context ∆.3

Definition 2.3 (SK∗). Given a type A, P : preT, Q : postTA the type notation
[∆]. SK∗ {P}A {Q} is defined as:

[∆]. SK∗ {P}A {Q} , SK A (P,Q)∗∆

where (P,Q)∗∆ is the A-specification defined as follows:

(P,Q)∗∆ , (λ i. ∃∆. i ∈ P, λ r im. ∀∆. i ∈ P → m ∈ Q)

The second step is to introduce the type KontARQ of continuation ob-
jects. R:preT is the initial condition, describing the heap at the point of a jump.
Q:postTA is a binary postcondition relating the initial heap with the ending heap
and value of the finalization code. The Kont type will always be in scope of a
variable j denoting the heap at the point of continuation capture (the index of
callcc in Figure 2.2); thus R and Q may depend on j as well.

We next show how the the type Kont∗ from Section 2.2, is a notation over Kont,
but first we need to generalize somewhat. As the following example illustrates,
the Kont∗ types actually require two different kinds of logical variables.

3 The notation also explains the operator (−)∗ (with the empty context ∆), that was used in
Figure 2.2.
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Example 2.4. Consider a continuation object which is captured when the heap
j = x 7→ v, can be jumped to only when x is incremented by some p, and whose
finalization code increments p further by 1. The scenario uses the program variable
x and two logical variables, v and p. However, v and p clearly have different nature;
v is implicitly universally quantified, while quantification over p is existential when
describing the precondition for the jump, and universal in the description of the
finalization code. Thus, we put v and p into two different contexts, and describe
the continuation object by the type

[v ], 〈p〉.Kont∗ {j ∈ x 7→ v}{x 7→ v + p}A {x 7→ v + p+ 1}

We refer to the two kinds of variables and contexts as box and diamond variables
and contexts, respectively. In Figure 2.2 we only used the box contexts, and in
general, when the diamond context is empty, we simply omit it. However, diamond
context is not always empty, as we will illustrate in the ping–pong program in
Section 2.6.2.

Definition 2.5 (Kont∗). Let ∆ and Γ be contexts of logical variables, and j be a
distinguished heap variable, possibly occurring freely in R : preT, P : preT and
Q : postTA. Then the notation [∆], 〈Γ 〉. Kont∗ {R}{P}A {Q}, is an abbreviation
for the following Kont type without logical variable contexts.

[∆], 〈Γ 〉.Kont∗ {R}{P}A {Q} ,
Kont A (λ i. ∀∆. R→ ∃Γ. i ∈ P ) (λ rm i. ∀∆. R→ ∀Γ. i ∈ P → m ∈ Q)

All the variables in ∆ are universally quantified in the notation, whereas the
variables in Γ are existentially quantified in the initial condition, and universally
in the postcondition.

We close the section by revisiting the issue of large footprint annotations. In
Section 2.2, inc3 could execute only in a heap with exactly the pointer x, and no
others. We now explain how to specify inc3 to admit execution in the presence of
additional pointers. We will use a (box) logical variable of type heap, to describe
the sub-heaps that do not contain x. For example, the more general annotation
for inc3 is given below.
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26 2.4. Inference rules

inc3 (x : ptr) : [v , h]. SK∗ {x 7→ v ∗ thish} ( ) {x 7→ v + 3∗ thish} ,
do c← callccj

f : [v , h].Kont∗ {j ∈ x 7→ v ∗ thish}
{x 7→ v + 1∗ thish} Σ•SK ( )

{r.x 7→ v + 2∗ thish

f spec rv (x 7→ v + 3∗ thish, x 7→ v + 3∗ thish)∗}.
do (ret [abort f (x := !x+ 1 ; ret [ret ( )])])

: [v , h]. SK∗{x 7→ v ∗ thish f j ∈ x 7→ v ∗ thish} Σ•SK ( )

{r. x 7→ v ∗ thish f spec v (x 7→ v + 1∗ thish,⊥)∗};
x := !x+ 1 ;

cmd c.

The annotations of inc3 introduce a logical variable h, the assertions thish,
and separating conjunction ∗, to name the part of the heap disjoint from the
pointer x. The occurrence of the same thish in both the pre- and postcondition of
inc3, specifies that inc3 keeps this part of the heap invariant. Moreover, h is local
to the Hoare triples in which it appears (unlike in first-order Hoare or Separation
logic, where logical variables are global). Thus, a specification of inc3 can be
extended to a larger heap merely by instantiating h, rather than by means of a
dedicated frame rule as in Separation logic. Because of the repeated occurrences
of thish in the assertions, this style of annotation is a bit more verbose than in
Separation logic, where the invariance of residual heaps is implicit. However,
in practice, the extra logical variable did not affect our proofs. We discuss in
Section 2.7 the reasons for needing large footprints in HTTcc, and some alternative
designs.

2.4 Inference rules

We develop the semantics of HTTcc using the Calculus of Inductive Constructions
(CIC) as the meta logic. The choice provides us directly with a method to
prototype HTTcc as a shallow embedding in Coq, thus inheriting a number of
useful constructs, such as dependent Π and Σ types, which we have already used
in Section 2.2. For the sake of brevity, we omit the treatment of such standard
constructs (it can be found in (The Coq Development Team, 2016; Bertot &
Castéran, 2004)), and freely assume the standard typing rules and the various
syntactic categories of CIC, such as, e.g., variable contexts. We only present
our impure monadic extensions: the typing rules for the SK and Kont types, and
related terms. In Section 2.5, we develop the semantic model for HTTcc, which
we mechanized in Coq, to show the soundness of the extension.
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The specific rules of HTTcc are of two distinct kinds. The first kind consists of
typing rules, which serve to infer the default program specifications (weakest pre-
condition for memory safety, and strongest postcondition wrt. that precondition).
The inference is important in practice because it minimizes the amount of annota-
tions that the user has to provide manually. The second kind consists of structural
lemmas that formalize the reasoning about Hoare-ordering of specifications. As
illustrated in Figure 2.2, such reasoning is needed in several situations: (1) We may
explicitly need to ascribe a custom specification to a program, and this requires a
proof that the default specification can be pre-weakened and post-strengthened
into a desired one, and (2) We may use the relation v , to explicitly declare that
a [−]-abstracted command satisfies a predetermined specification. The two kinds
of rules are discussed in Sections 2.4.1 and 2.4.2, respectively.

2.4.1 Typing rules

alloc : Πv:A. [h]. SK∗ {thish} ptr {r. r 7→ v ∗ thish}
dealloc : Πx : ptr. [B , v :B , h]. SK∗ {x 7→ v ∗ thish} ( ) {thish}
:=: Πx : ptr.Πv : A. [B ,w :B , h]. SK∗{x 7→ w ∗ thish} ( ){x 7→ v ∗ thish}
! : Πx : ptr. [v :A, h]. SK∗ {x 7→ v ∗ thish}A {r. x 7→ v ∗ thish f r = v}

Figure 2.3: Typing assignment rules for the heap-manipulating fragment of HTTcc
commands. Notice the large-footprint nature of these rules, as witnessed by the
use of the logical variable h to explicitly quantify over the rest of the heap.

From here on, we use s and variants to range over specifications (P,Q), with
pre s and post s projecting out the components.

Bind rule in Figure 2.4 perhaps best exemplifies the inference nature of our
typing rules. Given programs e1 and e2 with specification s1 and s2, respectively,
the rule infers the tightest specification for the sequential composition x← e1; e2

as follows. Because the execution of the compositions starts with e1, the inferred
precondition must require that pre s1 holds of the initial heap i. After e1 terminates
with an intermediate value x and heap h satisfying post s1 x i h, it must be that
pre (s2 x)h so that e2 is safe to run. The inferred postcondition declares the
existence of an intermediate value x, and and a heap obtained after e1 but before
e2, as per relational composition post s1 x ◦ post (s2 x) r. Bind, as well as the
other rules in Figure 2.4, use SK and Kont types without logical variable contexts,
which is why we introduced such types in Section 2.3 in the first place. Omitting
logical variables facilitates specification inference, as it circumvents the issue of
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28 2.4. Inference rules

Γ ` e1 : SK A s1 Γ, x : A ` e2 : SK B (s2 x)

Γ ` x← e1; e2 : SK B (λ i. pre s1 i ∧ ∀xh. post s1 x i h→ pre (s2 x)h,
λ r im. ∃x.(post s1 x ◦ post (s2 x) r) im)

Bind

Γ, j : heap, f : KontA (R j) (Qj) ` e : SK A (s j)

Γ ` callccj f . e : SK A (λ i. pre (s i) i,
λ r im. post (s i) r im ∨ (R ◦ Q i r) im)

CallCC

Γ ` v : A

Γ ` return v : SK A (λ i. True, λ r im. m = i ∧ r = v)
Ret

Γ ` f : KontARQ Γ ` e : SK A s

Γ ` abortB f e : SK B (λ i. R i ∧ s v (R f this i, Q), λ r im. False)
Abort

Γ ` e1 : SK A s1 s1 v s2

Γ ` do e1 : SK A s2

Do

Γ ` e : bool Γ ` e1 : SK A s1 Γ ` e2 : SK A s2

Γ ` if e then e1 else e2 : SK A (if e then s1 else s2)
If

Γ ` f : ( Π x:A. SK (B x) (s x))→ Πx:A. SK (B x) (s x)

Γ ` fix f : Πx:A. SK (B x) (s x)
Fix

Figure 2.4: HTTcc typing rules for specification inference.
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reconciling potentially different contexts of logical variables that may appear in
the type for e1 and the type for e2.

Abort rule infers a precondition that has a dual role. The first conjunct R i
ensures that the continuation object f is aborted to only in heaps i for which the
initial condition R is satisfied. The second conjunct sv (R f this i, Q) ensures
that e is an appropriate finalization code for f ; that is, the specification s of
e can be weakened into a precondition R and postcondition Q, as required by
the type of f . Additionally, this i allows the proof of the weakening to exploit
the knowledge that the heap in which the finalization code executes is exactly i.
The exact definition of v will be given in Section 2.4.2. Because abort does not
return any values, its return type B is arbitrary and can be supplied by the user.
We omit annotating this type in examples as it can be usually inferred from the
context.

CallCC rule in Figure 2.4, infers the specification for callcc f. e. The premise
of the rule introduces the heap variable j, which, as illustrated in Section 2.2,
provides a common point for f and e to “synchronize” on, thereby fixing the
values of various logical variables in relation to j. In the conclusion of the rule, j
will be instantiated with the initial heap of callcc; that is, with the heap at the
point of continuation capture.

The specification of f allows aborting to f only in heaps satisfying R j. After
f ’s finalization code terminates, the resulting heap and value satisfy Q j. If e has
a specification s, then the tightest specification of callcc f. e can be inferred as
follows. Because the execution of the whole command starts with e, the inferred
precondition has to be derived out of e’s precondition pre (s j). The unknown j
is instantiated with the actual initial heap, to obtain the tightest precondition
λ i. pre (s i) i. The postcondition is a disjunction expressing that e may produce
two different outcomes: it either aborts to f , or it does not. The left disjunct
post (s i) r im describes the non-aborting case; it simply equals the postcondition
of e with j instantiated by i. In those cases when e actually aborts, the disjunct
will be False, as it embeds the postcondition of the Abort rule. The right disjunct
is a relational composition (R ◦ Q i r) im which describes the aborting case, as
follows. In the aborting case, there exists a heap—call it h—that is current at the
point of abort. Due to the specification of f , R must relate i and h. Additionally,
m and r are obtained after the finalization code of f is executed at h, and thus
Q i r must relate h and m as well.

The annotations specifying the continuation object (R and Q) appear in a
negative position in the premise of CallCC, and cannot be inferred automatically.
In contrast, the specification s for e is generated by e’s typing derivation. The
property that only the aborting case has to be specified manually, differentiates
the algebraic callcc from the standard, non-algebraic alternatives. A detailed
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comparison is presented in Section 2.7.

Other rules The rule Do implements a type ascription, requiring a proof that
the specification s1 can be weakened into s2, as in the usual Hoare logic rule of con-
sequence. The If rule uses the type-level conditional, available in CIC, to compute
the specification of a program-level conditional out of the types of the components.
The Fix rule implements the usual typing for recursive procedures, requiring that
an SK type be established for the procedure body, under a hypothesis that the
recursive calls satisfy the same type. The primitive stateful commands have stan-
dard Separation logic specifications (Figure 2.3), except that they are extended to
the large footprint idiom by naming the unused heap with the logical variable h.

Additional notation In the rest of this chapter, we will use explicit names
for the derived specifications in Figure 2.4. For example, we write callcc s R Q s
for (λ i. pre (s i) i, λ r im. post (s i) r im ∨ (R ◦ Q i r) im), abort s R Q s for
(λ i. R i ∧ s v (R f this i, Q), λ r im.False), and similarly for bind s, read s, etc.

2.4.2 Structural lemmas and symbolic evaluation

The Hoare ordering on two specifications s1 and s2 is defined as:

s1 v s2,∀ i. pre s2 i→ verify i s1 (λ r:Am. post s2 y im)

where for any κ : A→heap→prop:

verify i s κ , pre s i ∧ ∀ rm. post s r im→ κ r m

The definition of s1 v s2 states that pre s1 weakens into pre s2 and post s2

strengthens into post s1, as in the Hoare logic rule of consequence. It is split into
two stages in order to exploit the hypothetical reasoning of CIC and Coq. In
practice, the hypothesis pre s2 i will always move into the hypothesis context of
Coq, leaving verify to describe the remaining proof goal.

The HTTcc proof obligations arise directly from the side condition about
Hoare ordering in the rule Do in Figure 2.4, when the user wants to ascribe
a desired specification to a program. In the practical work with HTTcc, the
proof obligations are discharged by applying a number of carefully crafted lemmas
about verify that implement verification by symbolic evaluation. We illustrate the
process here, and discuss the relationship to algebraicity of control operators in
Section 2.4.3.

For instance, let e1 and e2 be computations with specifications s1 and s2 x,
respectively. The inferred specification for x← e1; e2 is bind s s1 s2. An HTTcc
proof obligation establishing that in some heap i, the execution of the sequential
composition produces a heap and a value satisfying κ, will have the form:

verify i (bind s s1 s2)κ
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The idea of symbolic evaluation is to discharge such a goal as follows. It suffices to
show that verifying a composite B-spec (bind s s1 s2) can be reduced to verifying
s1 against a κ′, where κ′ itself involves verifying s2 against κ. The process is
iterated as long as s2 contains sequential compositions, and can be seen as a
sequence of applications of the following lemmas in HTTcc:

Step : verify i s1(λ ym. verify m (s2 y) κ)→ verify i (bind s s1 s2)κ

ValDo : pre s i→ (∀x im. post s x im→ κxm)→ verify i s κ

The Step lemma implements the iterative step, and ValDo lemma applies in
the end, when there are no outstanding sequential compositions to be stepped
through.

The ValDo lemma may be specialized to streamline the symbolic evaluation
for specific commands. For example, let f : KontARQ and e : SKAs. The
inferred spec for abort f e is abort s R Q s = (λ i. R i∧s v (R,Q), λ r im.False).
Taking this spec for s in ValDo, after some simplification, we obtain:

ValAbort : R i→ verify i s (λr. λm.Q r im)→ verify i (abort s R Q s)κ

In other words, to verify abort to f , we need to show that R holds of the current
heap, and that the supplied finalization code satisfies Q after running in i.

In case e1 = callccj f. e, the inferred spec is

callcc s R Q s = (λ i. pre (s i) i, λ r im. post (s i) r im ∨ (R ◦ Q i r) im)

for some j and f : KontA (R j) (Q j) and e : SK A (s j). Taking this spec for s,
and after some rearrangement of the disjunction in the postcondition of callcc s,
ValDo can be specialized into the following lemma.

ValCC : verify i (s i)κ→ (∀ r:Am. (R ◦ (Q i r)) im→ κ rm)→
verify i (callcc s RQs)κ

The first hypothesis corresponds to the case when e does not abort. In that case,
the goal reduces to verifying (s i) against κ. The second hypothesis corresponds to
the aborting case. In that case e produces an ending heap m and value x satisfying
(R ◦ (Q i))x im; that is e first reaches an aborting heap out of i (predicate R),
and then executes the finalization code (Q i). Then we just need to prove that κ
holds after the execution of the finalization code.

Specialised symbolic execution lemmas can be proved for all other primitive
commands. Furthermore, because verify is an ordinary logical definition, users can
establish such lemmas for their own programs as well, directly in the logic.

Example 2.6. We can implement the usual throw command, as an abort with
an immediately-returning finalization code. Given f : KontARQ and a value
v:A, we define:

throw g v , abort f (ret v)

31



32 2.4. Inference rules

The inferred specification throw s R Q v = abort s R Q (ret s v) can be proved to
satisfy a streamlined version of ValAbort, which exploits the trivial nature of
the finalization code to simplify one of the hypotheses.

ValThrow : R i→ Q v i i→ verify i (throw s R Q v)κ

2.4.3 Algebraicity at the level of specifications

In this section, we show that the algebraicity property of callcc can be expressed
as a lemma over specifications, similar to the symbolic evaluation lemmas from
the previous section. This lemma, which we call AlgCC, expresses that we can
commute the specification forms bind s and callcc s, thus lifting to the level of
specifications the algebraicity equation (1) from Section 2.2. However, stating
the AlgCC lemma requires generalizing somewhat the definition of callcc s RQ
s1. We first introduce the generalized definition, which we rename algcc s Rs0 s1,
and then describe the intuition behind it.

Consider a program of the form

x← (callccj f. e1); e2

where f : KontA (R j) (Q j), e1 : SK A (s1 j), and x:A ` e2 : SK B (s2x). Then,
side-by-side, the two definitions look like:

callcc s RQs1 = (λ i. pre (s1 i) i,

λ r im. post (s1 i) r im ∨ (R ◦ Q i r) im)
algcc s Rs0 s1 = (λ i. pre (s1 i) i ∧ ∀h.R i h→ pre (s0 i)h,

λ r im. post (s1 i) r im ∨ (R ◦ post (s0 i) r) im)

The main difference is that where callcc s uses only the postcondition Q (abstract-
ing over j) to specify the finalization code, algcc s takes a full specification s0

(also abstracting over j), which includes a precondition as well. In callcc s, the
precondition for the finalization code is assumed to be the trivially true heap
predicate, and we can prove the equation

callcc s RQs1 = algcc s R (λ j. (>, Q j)) s1.

Intuitively, callcc s could use the trivial precondition for the finalization code,
because R already describes what holds of the heap at the point of abort, and
this is the same heap in which the finalization code executes. However, the main
property of algebraic commutation is that it changes the finalization code by
extending it with e2, though it does not change the point where the continuation
is aborted. The new definition algcc s thus divorces R and pre s0, so that the
algebraicity lemma can express that R remains fixed, while pre s0 changes. The
changes to pre s0 cannot be arbitrary, however, as the finalization code always
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executes in a heap in which abort is called. Thus, the precondition of algcc s
includes a conjunct that R implies pre s0 for every initial heap i, and aborting
heap h.

We can now state the algebraicity lemma for callcc, with the omitted proof
included in our Coq files (Delbianco & Nanevski, 2017).

AlgCC : verify i (bind s (algcc s Rs0 s1) s2) κ ←→
verify i (algcc s R (λ j. bind s (s0 j) s2) (λ j. bind s (s1 j) s2)) κ

2.5 Denotational semantics

In this section we present the semantics of HTTcc as a shallow embedding into CIC.
That is, we provide a semantic interpretation function J−K that maps HTTcc types
SK and Kont into types defined in CIC, but acts as identity on all the other types
inherited from CIC, such as nat or heap. Similarly, the interpretation of terms
maps the monadic constructs such as callcc, abort, etc., into CIC-terms, while
acting as an identity on all the other terms inherited from CIC. The interpretation
extends homomorphically to variable contexts as well.

2.5.1 Semantics of types

As customary in the case of control operators, our denotational semantics is
parameterized by the type X of return results for the continuations. We further
require that X is a complete lattice, thus providing us with means to model the
fixed point combinator in CIC, using the Knaster-Tarski theorem.

Definition 2.7. Given a type A, and predicates P : preT and Q : postT A, the
types SK A (P, Q) and KontAP Q are interpreted as follows.

JSK A (P, Q) K , Πi:heap. JP K i→ (Πr:JAK.Πm:heap. JQK r im→X)→ X

JKontAP QK , JSK A (P, Q)K→ Πj:heap. JP K j → X

A computation of SK type takes a heap i satisfying the precondition P , and
a continuation requiring the postcondition Q as a precondition. Intuitively, the
continuation applies to the ending value and heap of the computation, to produce
a result in X. As the latter type is a complete lattice, the possible results include
divergence, denoted by the bottom element of the lattice. We don’t model the
faulting behaviour such as type or memory errors (e.g., de-referencing a dangling
pointer), but instead rely on the proofs of JP K i and JQK r im to statically ensure
that a computation executes only in heaps and continuations for which such errors
do not occur. In this sense, well-typed (i.e., well-specified) computations in HTTcc
do not fault, as usual for type systems and for fault-avoiding Hoare logics such as
Separation logic.
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A further useful intuition about our model may be gained if one erases the
dependencies on P and Q in Definition 2.7. This results in the following informal
equations:

JSKAK = heap→ (JAK→ heap→ X)→ X

JKontAK = JSKAK→ heap→ X

The first equation shows that the SKA type is essentially the standard state-
passing continuation monad. The second equation shows that a continuation
object semantically requires two arguments: an explicit finalization code (the
SKA type), and a heap. Of course, the finalization code is explicitly provided by
the program as an argument of abort. Importantly, the heap argument is implicitly
supplied by the denotation of abort as the heap current at the point of aborting
to f .

Of course, the parameterization with finalization code is what makes our
control operators algebraic, and is directly inspired by Jaskelioff (Jaskelioff, 2009).
On the other hand, the further heap argument makes the KontA type implement
non-rollbacking continuations. In contrast, the algebraic callcc presented by
Jaskelioff for a state and continuations monad does roll-back the state to the one
captured together with the current continuation.

2.5.2 Semantics of computations

For the sake of brevity, we present only the denotational semantics of the control
operators callcc and abort. Moreover, we illustrate only the simplified setting
where the dependencies on P and Q are erased from the types (as in the above
informal equations), and the dependencies on the proofs of JP K i and JQK r im
are erased from the terms. The full dependency-respecting denotations for all the
monadic commands from Figures 2.4 and 2.3 are implemented in the companion
Coq files.

Definition 2.8 (callcc f. e). Given f : JKontAK and e : JSKAK, the denotation
of callcc f. e of type JSKAK is defined as: 4

JcallccK : (JKontAK→ JSKAK)→ JSKAK
Jcallcc f. eK , λi : heap. λk : JAK→ heap→ X.

[λc : JSKAK. λh : heap. c h k/f ]JeK i k

Intuitively, executing callcc f. e corresponds to applying the denotation to the
initial (i.e., captured) heap i and continuation k. The body e is executed using
the same heap and continuation. However, first the variable f : JKontAK is bound
to a continuation object that, when supplied the finalization code c and a heap h
that is current at the point of aborting to f , executes c in h passing the control
(i.e., jumping) to k.

4Omitting the index j to callcc, which may only appear in the erased dependencies.
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Definition 2.9 (abortB f e). Given f : JKontAK and e : JSKAK , the denotation
of abortB f e of type JSKBK is given by:

JabortBK : JKontAK→ JSKAK→ JSKBK
JabortB f eK , λi : heap. λk : JBK→ heap→ X. JfK JeK i

Theorem 2.10 (Soundness). If Γ ` e : A then JΓK `CIC JeK : JAK.

Proof. The proof is by induction on the structure of e. The interesting cases are
when e is one of the monadic commands (correspondingly, when A is an SK type),
as in all other cases the semantic function is trivial. When e is a monadic command,
the soundness proof for the command is intertwined with the definition of the
denotation of e. For example, in the case of e = callccj f. e the denotation will
involve parameterization on the proofs of JP K i and JQK r im, for the appropriate
P and Q, that we have simplified away in our discussion. Such proof parameters
are used in the denotations to build larger proofs on-the-fly, as necessary to make
the various sub-terms of the denotation type-check, until ultimately the whole
denotation term type-checks wrt. the specification given in Figure 2.4. Similar
considerations apply for other monadic terms as well. One exception is the fixed
point construct fix f , whose soundness is proved by an appeal to Knaster-Tarski
theorem over the monotone completion of f . The Knaster-Tarski theorem applies
because JST A (P,Q)K is a complete lattice, being defined as a function space into
a complete lattice X. We have mechanized all the steps of the proof in our Coq
mechanization.

2.6 A short verification survey

We present the verification of two examples exhibiting non-trivial patterns for pro-
gramming with continuations. The first example, rember-up-to-last, illustrates
downwards or exit continuations, whereby a jump is used to escape early from a
recursive call, whilst discarding suspended computations. The second example,
ping–pong, illustrates upwards continuations or unstructured loops, where the
executions of a captured continuation are interleaved with user code, thereby
mimicking the cooperating behaviour of (a simplified version of) coroutines. In
the companion files (Delbianco & Nanevski, 2017), we verify other examples as
well, such as escaping from infinite loops and using continuations to implement
error handlers.

2.6.1 rember-up-to-last

Let A be a type supporting decidable equality; i.e., there exists a function
== :A→A→bool. Given x :A and a list xs : listA, rember-up-to-last x xs, re-
turns the ending segment of xs after the last occurrence of x; if x does not occur
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1. rember-up-to-last (x : A) (xs : listA) :

[h]. SK∗ {thish} (listA) {r. thish f r = rember x xs [ ]} ,
2. do (callccj

exit : [h].Kont∗ {j ∈ thish} {if x ∈ xs then thish else ⊥}
(listA) {r. thish f r = rember x xs [ ]}.

3. fix (λ f : remberT. λ ys : listA.

4. if ys is y :: ys′ then

5. zs← f ys′;

6. if x == y then throw exit zs

7. else ret (y::zs)

8. else ret [ ]) xs)

where

remberT,Πys : listA.

SK∗ {this j f ∃ps. xs = ps++ys} (listA) {r. this j f r ∈ remberP x ys [ ]}

remberP x xs acc , if xs is y :: ys′

then if x == y then ∅ else remberP x ys′ (acc++[y])

else {ps | ps = acc}

Figure 2.5: rember-up-to-last in HTTcc.
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1. rember (x : A) (xs acc : listA) : listA ,

2. if xs is y::ys′ then

3. if x == y then rember x ys′ [ ]

4. else rember x ys′ (acc++[y])

5. else acc.

Figure 2.6: Purely functional rember.

in xs, the whole xs is returned (Friedman & Felleisen, 1996, pp. 55). For example,
given xs = [23, 16, 42, 4, 42, 8, 15, 16], we have:

rember-up-to-last 4 xs = [42, 8, 15, 16]

rember-up-to-last 16 xs = [ ]

rember-up-to-last 42 xs = [8, 15, 16]

rember-up-to-last 7 xs = xs

Figure 2.5 implements rember-up-to-last in HTTcc, following the ML imple-
mentation given in Hayo Thielecke’s phD thesis (Thielecke, 1997). For simplicity,
we use purely-functional lists instead of imperative, heap allocated lists. The im-
plementation works as follows. In line 2, it captures the continuation with callcc.
Then, it recurses over the input list xs, searching for x (lines 3–5), rebuilding the
input list on the way back (line 7). If x is found (line 6), it jumps out of the loop,
by throwing to the captured continuation (Example 2.6). The returned value zs
is the list rebuilt so far, while the outstanding iterations of the loop intended to
further rebuild the list, are discarded.

We also develop a purely-functional version rember (Figure 2.6) by induction
on xs. rember does not use callcc, but instead relies on tail recursion and
the accumulator acc to keep track of the currently rebuilt list. Of course, the
implementation with jumps is preferable from these efficiency standpoint, but we
require the pure rember in order to specify rember-up-to-last.

We now analyse the type annotations presented in Figure 2.5. The specification
given to rember-up-to-last (line 1) is quite intuitive. The function can run in
an arbitrary heap h (thish in the precondition). It leaves the heap unchanged
(thish in the postcondition), and the returned result r is the same as running
the tail-recursive rember with the empty initial accumulator. The continuation
object exit (line 2) is specified as follows. The initial condition exposes that the
captured heap j equals h. A jump to exit may occur only when the precondition
is satisfied; in this case, only when x ∈ xs. The postcondition states that the
heap is unchanged, and the return value equals running rember, as expected.

The most interesting annotation is the loop invariant remberT provided as the
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type of the recursive function f . The precondition states that f is only ever applied
to the tail ys of xs; hence xs can be partitioned as ps++ys. The partitioning is
made explicit in the precondition, as it will be required when proving that we
are throwing the correct ending segment in line 6. In the postcondition, remberT
has to state that f produces the correct result. Importantly, however, it cannot
use the helper function rember. The latter function requires an accumulator
argument, but as f itself is not tail recursive, it is not clear which value to
supply for the accumulator. Unlike the specifications of rember-up-to-last and
exit, it is incorrect to use [ ], as that does not reflect the looping behaviour.
It is also incorrect to existentially abstract over the accumulator, since that
produces too weak a property which then does not imply the postcondition of
rember-up-to-last, where the accumulator is instantiated to [ ].

The workaround is to define a helper function remberP, which is similar to
rember, but records when the jumps in f appear, as follows. remberP returns
either an empty set of values, to signalize a jump, or a singleton set, with the
correct value, in the non-jumping case. More precisely, we have the following
lemma:

rmb rmbP : r ∈ remberP x xs acc → r = rember x xs acc.

Then, the loop invariant remberT can assert that the return value r is always in
the set defined by remberP. In the case of a jump, this property is evidently false,
since the set is empty. But, in such a case, the program behaviour is described by
the annotation on exit anyway, and the loop invariant need not bother describing
it again.

Figure 2.7 presents a proof outline for rember-up-to-last x xs. The trivially
true assertion ∃h. thish in line 1 corresponds to unfolding the notation for the type
SK∗ with a precondition thish, and a logical variable h. In line 3, the current heap
h is captured into the variable j, corresponding to substituting h for j in the rule
BndCC, Section 2.4. In the proof outline, we cannot represent the substitution
because j appears in the rest of the code, so instead we equate j with h in the
assertion. Line 6 starts the verification of the loop; it shows that the precondition
of the loop invariant remberT holds; the current heap is unchanged with regard
to the captured one, and there exists a partition xs = ps++ys. One critical point
in the proof is Line 13, where we need to establish zs = rember x xs [ ], which is
the precondition for throw. This property can be proved out of the partitioning
xs = ps++(x :: ys′) and zs ∈ remberP x ys′ [ ] available in Line 12, by using
rmb rmbP and additional two helper lemmas, whose derivation we elide:

rmb cat : rember x (ps++ ys) acc = rember ys (rember x acc ps)

rmb in : rember x xs acc = if x ∈ xs then rember x xs [ ] else (acc ++ xs)

Another critical point is line 17, where we need to prove y::zs ∈ remberP x (y::ys′) [ ],
required to establish the postcondition of the loop. The property is proved out
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1. {∃h. thish}
2. do ( callccj exit .

3. {∃h. thish f j = h}
4. {this j f xs = [ ]++xs}
5. fix (λ f ys.

6. {∃ ps. this j f xs = ps++ys}
7. if ys is y :: ys′ then

8. {∃ ps. this j f xs = ps++(y:: ys′)}
9. zs← f ys′;

10. {∃ ps. this j f xs = ps++(y:: ys′) f zs ∈ remberPx ys′ [ ]}
11. if x == y then

12. {∃ ps. this j f xs = ps++(x::ys′) f zs ∈ remberPx ys′ [ ]}
13. {this j f x ∈ xs f zs = rember x xs [ ]}
14. throw exit zs

15. {⊥}
16. else ret (y::zs)

17. ∃ ps. this j f xs = ps++(y:: ys′) f y::zs ∈ remberPx (y::ys′) [ ]}
18. else ret [ ]

19. {∃ ps. this j f xs = ps f [ ] ∈ remberPx [ ] [ ]}
20. ) xs)

21. {this j f r ∈ remberPx xs [ ]}
22. {∃h. thish f (r ∈ remberPx xs [ ] g (x ∈ xs f r = rember x xs [ ]))}
23. {∃h. thish f r = rember x xs [ ]}

Figure 2.7: Proof outline for rember-up-to-last x xs.
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of zs ∈ remberP x ys′ [ ] available in line 10, after unfolding the definition of
remberP once, and using the following lemma about remberP:

zs ∈ remberPx ys acc→ y::zs ∈ remberP x ys (y::acc)

Line 19 describes what holds in the else branch of the main conditional in the loop,
and line 21 establishes that the loop invariant holds at the end of the loop. Line 21
is a common weakening of lines 15, 17 and 19. Line 22 includes a disjunction,
showing that the line can be reached by a normal termination of the loop (line 21),
or by a jump to exit. Line 23 is obtained out of line 22 by applying rmb rmbP,
and establishes the specified postcondition of rember-up-to-last.

2.6.2 Ping-Pong cooperation

In Section 2.2 we presented inc3, which used a closure to capture a continuation
and execute it twice. Here, we generalize the idea to n calls to abort, thus
iterating n times the captured continuation. The result is an interleaving between
the captured continuation and the finalization code in the closure, which creates
a cooperation pattern resembling that of coroutines (Thielecke, 1997)—albeit
one without the full power of coroutine fork or yield operations, which further
require storing continuations into the heap (Springer & Friedman, 1989; Reppy,
1999). Unlike inc3, where both the captured continuation and the finalization
code executed the same code, we will have different computations for the captured
continuation, ping, and for the finalization code in the closure, pong, and use the
pre- and postconditions to show that these are interleaved in the evaluation of
ping–pong. Since our motivation is to verify the cooperation pattern, rather
than ping and pong per se, we give a trivial implementation for the latter functions:
ping, incr x and pong, incr y, where:

incr z : [v h]. SK∗ {z 7→ v ∗ thish} ( ) {z 7→ v + 1∗ thish}
,do(v ← !x; x := v + 1 )

Figure 2.8 presents ping–pong, whose structure is close to that of inc3. In
line 2, callcc captures the continuation corresponding to the rest of the program
λc. ping; cmd c and binds it to the continuation object k. The body of callcc
returns a function f defined recursively on n. If n is non-zero (line 5), f returns
a closure which aborts to the captured continuation with the finalization code
consisting of pong followed by the recursive call to f . In the zero case, f returns
the computation pong. The result of this recursive function is bound to c in the
sequel. When n > 0, c will be bound to a closure with n calls to abort nested in
the finalization code:

[abort k (pong; ret [abort k (· · · abort k︸ ︷︷ ︸
n calls to abort k

(ret [pong]))])]
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1. ping–pong (n : nat) :

[v w h]. SK∗ {x 7→ v ∗ y 7→ w ∗ thish}( )

{x 7→ v + n+ 1∗ y 7→ w + n+ 1∗ thish} ,
2. do (c← callccj

k : [v w h]〈p〉.
Kont∗ {j ∈ x 7→ v ∗ y 7→ w ∗ thish}

{if n 6= 0 then x 7→ v + p+ 1∗ y 7→ w + p∗ thish else ⊥}
Σ•SK ( )

{r. x 7→ v + p+ 1∗ y 7→ w + p+ 1∗ thish

f spec rv (x 7→ v + p+ 2∗ y 7→ w + p+ 1∗ thish,

if p+ 1 = n then

x 7→ v + n+ 1∗ y 7→ w + n+ 1∗ thish

else ⊥)∗}.
3. fix (λ f : pingpongT. λ z : nat.

4. if z is Suc z′ then

5. ret [abort k (pong; (f z′))]

6. else ret [pong]) n;

7. ping;

8. cmd c).

where

pingpongT,Πz : nat.

[v w p h]. SK∗ {x 7→ v + p ∗ y 7→ w + p∗ thish

f j ∈ x 7→ v ∗ y 7→ w ∗ thish f z ≤ n f p+ z = n}
Σ•SK ( )

{r. x 7→ v + p ∗ y 7→ v + p∗ thish

f spec rv (x 7→ v + p+ 1∗ y 7→ v + p∗ thish,

if p = n then

x 7→ v + n+ 1∗ y 7→ w + n+ 1∗ thish

else ⊥)∗}

Figure 2.8: ping–pong cooperation.
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After callcc, ping is evaluated to increment x, and then c is evaluated. If n = 0,
and thus c is bound to [pong], the value at y is incremented an the function
terminates. If n > 0, the outermost abort in the closure above is executed,
thus running pong as the finalization code and passing the rest of the nested
computations in the closure, bound to c, to the captured continuation. This results
in a backward jump to line 7. The loop continues until the closure is consumed in
full and the function terminates. As a result ping and pong are interleaved n+ 1
times.

This behaviour is reflected in the type of ping–pong: when the function is
executed in a heap containing at least the pointers x and y storing some natural
number, the result after n+ 1 executions of ping and pong is a heap with the same
shape, where the values of x and y are both incremented n+ 1 times.

The type invariant pingpongT describes the specification of the loop that defines
the closure f described above: on each iteration of the recursive call, we insert
calls to pong deeper into the closure, which will execute after the corresponding
ping. Then, we make explicit that on each recursive call, the values stored in the
heap have been incremented appropriately. We introduce a (box) logical variable
p to account for this fact: when the recursive call to f occurs, p calls to ping and
p calls to pong have occurred. The recursive call produces a closure whose spec
we define using v. The closure should be run in a heap after the (p+ 1)-execution
of ping. As for the postcondition, If p 6= n, then the closure’s head is a call to
abort, line 5, and the postcondition is ⊥. If p = n, i.e. this is the last iteration of
f , then the closure corresponds to the one in line 6, entailing that this is the last
execution of the loop, if n > 0 or that there was no loop at all otherwise. Hence,
the final heap of the closure results in the assertion:

x 7→ v + n+ 1∗ y 7→ w + n+ 1∗ thish (2.3)

Unlike the case of inc3, the continuation object k here is aborted to more than
once. As a result, the precondition in Kont∗ has to accommodate for the changes
in the state in each of the different jumping points. This is solved by using a
(diamond) logical variable p, which allows us to discriminate the changes of each
particular jumping point with regard to the captured heap j. The precondition in
k states that the calls to abort occur when n > 0. Then, the heap at each jumping
point should reflect the effect of p+ 1 executions of ping and p executions of pong.
The postcondition states that the finalization code performs p+ 1 execution of
pong, and that it returns a closure which, again, is meant to run after the next
ping. The postcondition in the closure is similar to the one in pingpongT, albeit
the current iteration being p+ 1 rather than p, as one ping has already executed.

We present a proof outline for ping–pong in Figure 2.9, the full proof can be
consulted in our HTTcc source files (Delbianco & Nanevski, 2017). For clarity
sake, we introduce the following notation to abbreviate the asserted shape of the
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1. {∃h. x 7→ v ∗ y 7→ w + n∗ thish}
2. do (callccj k .

3. {∃h. shapeP[v w h] 0 0 f j ∈ shapeP[v w h] 0 0}
4. fix (λ (f : pingpongT) (z : nat).

5. {∃h p. shapeP[v w h] p p f j ∈ shapeP[v w h] 0 0 f z ≤ n f p+ z = n}
6. if z is Suc z′ then

7. {∃h p. shapeP[v w h] p p f j ∈ shapeP[v w h] 0 0

f z′ + 1 ≤ n f p+ z′ + 1 = n}
8. ret [abort k (pong; (f z′))]

9. {∃h p. shapeP[v w h] p p f j ∈ shapeP[v w h] 0 0 f z′ + 1 ≤ n

f p+ z′ + 1 = n f spec rv (shapeP[v w h] (p+ 1) p, ⊥)∗}
10. else ret [pong]) n);

11. {∃h p. shapeP[v w h] p p f j ∈ shapeP[v w h] 0 0 f p = n

f spec rv (shapeP[v w h] (n+ 1)n, shapeP[v w h] (n+ 1) (n+ 1))∗}
12. {∃h. shapeP[v w h] 0 0 f j ∈ shapeP[v w h] 0 0

f spec rv (shapeP[v w h] 1 0, if n = 0 then shapeP[v w h] 1 1 else ⊥)∗}
13. {∃h p. shapeP[v w h] 0 0

f spec rv (shapeP[v w h] 1 0, if n = 0 then shapeP[v w h] 1 1 else ⊥)∗

g if n 6= 0 then

shapeP[v w h] (p+ 1) (p+ 1)

f spec cv (shapeP[v w h] (p+ 2) (p+ 1),

if p+ 1 = n then shapeP[v w h] (n+ 1) (n+ 1) else ⊥)∗

else ⊥}
14. ping;

15. {∃h p. shapeP[v w h] 1 0

f spec rv (shapeP[v w h] 1 0, if n = 0 then shapeP[v w h] 1 1 else ⊥)∗

g if n 6= 0 then

shapeP[v w h] (p+ 1) (p+ 1)

f spec cv (shapeP[v w h] (p+ 2) (p+ 1),

if p+ 1 = n then shapeP[v w h] (n+ 1) (n+ 1) else ⊥)∗

else ⊥}
16. cmd c).

17. {∃h. x 7→ v + n+ 1∗ y 7→ w + n+ 1∗ thish}

Figure 2.9: A proof outline for ping–pong.
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current heap:

shapeP[v w h]nm , x 7→ v + n∗ y 7→ w +m∗ thish

Notice we explicitly mark the logical variables as such using the [ ] notation for
logical variables contexts, although this has no semantic meaning: the intended
effect is to remember that those variables will always be instantiated to the (same)
logical values throughout the proof outline. Using this notation, the heap assertion
in the precondition of ping–pong in Figure 2.8 would be shapeP[v w h] 0 0, whereas
the one in Equation 2.3 above is rendered as shapeP[v w h] (n+ 1) (n+ 1)).

2.7 Discussion and related work

Reasoning with non-algebraic callcc To understand the difference in spec-
ification and reasoning between algebraic and non-algebraic control operators,
we have repeated our formal development for a non-algebraic set of operators,
which we also make available online (Delbianco & Nanevski, 2017). As a basis, we
gave control operators a more familiar type for non-parameterized continuation
monads (Wadler, 1994):

callcc : ((A→ SKB)→ SKA)→ SKA

throw : (A→ SKB)→ A→ SKB

Continuation objects are ordinary side-effectful functions of type A→ SKB, which
do not make provisions for finalization code, and are thus not algebraic (Jaskelioff,
2009). The same remark applies to the type given to the C-operator in (Thielecke,
2009), which is a different, but closely related control operator (Sabry & Felleisen,
1993; Felleisen et al. , 1987).

We managed to soundly parameterize the monad with Hoare-style assertions
using the following typing rules.

j, f : Πx:A. SK B (S x j, λ r im. False) ` e : SK A (P j,Q j)
∀j. (P j,Q j) v (λ i.j = i ∧R i, S)

` callccj f. e : SK A (R, S)

` f : Πx:A. SK B (R, λ rim. False) ` e : A

` throw f e : SK B (R, λ r im.False)

The intuition for the callcc rule is that the user must provide the ending specifi-
cation pair (R, S). The (binary) postcondition S for the whole command is used
as a precondition for the continuation object f , after S is first instantiated with
the value x that is passed to f , and the captured heap j. The rule has a side
condition requiring that the specification (P j,Q j) inferred for the body e, can
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be weakened into the desired (R, S), under the knowledge that the captured heap
j equals the initial heap i.

The requirement that the specification (R, S) has to be provided by hand,
practically differentiates the algebraic and non-algebraic operators. In the non-
algebraic callcc, the specification is monolithic, and the postcondition S is usually
a disjunction whose cases specify both the jumping and the non-jumping behaviour
of the code. The algebraic callcc separates the two cases; the jumping is manually
specified in the type of f , but the non-jumping specification can often be inferred
by the typing rules from the structure of e, say, if e is straight line code, or
by using the invariants provided with the loops in e, otherwise. Our examples
rember-up-to-last and ping–pong illustrate the point, whereby e’s specification
directly corresponds to the supplied loop invariants. In the non-algebraic case,
specifying these two examples incurs an overhead that the same annotation has to
be provided twice; once as the loop invariant, and again as part of the specification
of callcc.

Small vs. large footprints The need for large footprints and explicit naming
of residual heaps arises in HTTcc due to the control operators. The HTTcc typing
rule for Abort, requires first discharging a precondition that the heap i at the
point of the jump is related by the initial condition R to the heap j at the point
of continuation capture. R is an ordinary predicate on heaps, rather than a Hoare
triple. Thus, the usual idea of Separation logic, whereby a Hoare triple leaves the
unused parts of a program implicitly unchanged, does not directly apply, and we
have to name the unused parts in i and j in order to explicitly state their equality.

We have considered an alternative whereby the denotational semantics of
control operators may automatically determine the unused part of the heap,
by subtracting out of the current heap the portion described by the assertions.
However, for this to work, the assertions would have to be precise, i.e., uniquely
determine the portion to be subtracted. But then, the precision of each used
assertion has to be formally proved. Thus, we opted for slightly increasing the
specification burden by introducing explicit thish predicates, as a trade-off for not
having to prove precision of assertions.

Despite the slight overhead of large footprints, we have not found them too
problematic in practice. The naming of the residual heaps is intuitive and can
be done systematically. Moreover, the logical variables used in the naming are
local to the Hoare triple. This makes a big difference from ordinary first-order
Hoare or Separation logic, where the global nature of logical variables makes such
a naming scheme—and correspondingly, the use of large footprints—a complete
non-starter. But mostly, it is the presence of separating conjunction ∗, which
makes HTTcc capable of reasoning about heap disjointness with the same ease
inherent in Separation logic, irrespective of whether the annotations describe full
or partial heaps.
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Specification-only variables and implicit constructions Our callcc prim-
itive is indexed by a specification-only variable j, which binds the heap at the
point of continuation capture. j should be used only in the assertions and proofs,
but not in the executable parts of the callcc block. Unfortunately, Coq (and
consequently HTTcc) does not currently provide any means for enforcing this
syntactic distinction. Declaring variables such as j as specification-only is na-
tively supported by Coq∗, an extension of Coq based on the Implicit Calculus
of Constructions (Barras & Bernardo, 2008). In the future, we plan to explore
embedding HTTcc into Coq∗, to make use of this feature.

Higher-order heaps and semantic models for callcc Dreyer et al. (Dreyer
et al. , 2010) and Støvring and Lassen (Støvring & Lassen, 2007) develop semantics
models and methods for equational reasoning in such models, for programs with
continuations and mutable store. A specific focus in both works is on higher-order
heaps (Krishnaswami, 2011; Yoshida et al. , 2008; Schwinghammer et al. , 2011);
that is, the ability to store computations (and continuations as a special case)
into the heap. HTTcc’s model is much simpler in this particular respect. While
it allows programs that return continuations, by encapsulating them through a
closure, it does not allow programs that store side-effectful computations into the
heap. The reason is that we defined SK and Kont types in terms of heap, rather
than mutually recursively with heap, as required for stored computations. In the
future, we plan to develop a model for HTTcc with stored computations. We
plan to build on the model for HTT by Svendsen et al. (Svendsen et al. , 2011),
which includes higher-order heaps, but no control operators. Our ultimate aim
is to implement proper coroutines, following Reppy (Reppy, 1999, cp. 10), and
use them to verify concurrency primitives. Moreover, our inference of weakest
pre- and strongest postconditions by the rules presented in Figure 2.4 is also in
the spirit of characteristic formulae (Park, 1981; Aceto & Ingólfsdóttir, 2007;
Charguéraud, 2010).

Hoare logics for higher-order control Crolard and Polonowski (Crolard &
Polonowski, 2012) have recently developed a Hoare logic for control operators, in
which specifications are carried out in types. While in this respect, the approach is
similar to HTTcc from the high-level point of view, there is a number of differences.
For example, Crolard and Polonowski only consider mutable stack variables with
block scope, but no pointers or aliasing. Procedures are not allowed to contain
free variables, and type dependencies contain first-order data only, such as natural
numbers. In contrast, in HTTcc, we allow the full expressiveness of CIC, including
Σ-types over specifications, which, as we illustrated, is required for specifying
closures that return captured continuations. Berger (Berger, 2009) presents a
first-order Hoare logic for callcc in an otherwise purely functional language. One
of the main features of the logic is the polarity distinction between the types of
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programs that perform jumps (’jumping-to’) and the types of labels for jumps
(’being-jumped-to’). From the point of view of reasoning, the logic allows nesting
Hoare triples inside the assertions. This is necessary for specifying closures with
captured continuations, and achieves the same effect as Σ-types over specifications
in our dependently-typed setting.

Hoare reasoning through dependent types Related systems that employ
Hoare-style specification via types are HTT (Nanevski et al. , 2010) and F ∗ (Swamy
et al. , 2013). HTT is a direct precursor of HTTcc, but does not include the
control operators. It uses an embedding of (small footprint) Separation logic via
monads into Coq to formulate annotations and discharge verification conditions.
A similar idea of Hoare monads in Coq, without control operators, has also been
considered by Swierstra (Swierstra, 2009). F ∗ specifies computations using a
somewhat different monad from the above work. Instead of postconditions ranging
over the input and output heaps, F ∗ considers predicate transformers ranging
over sets of input and output heaps. F ∗ does not include a separate form of
preconditions to specify safety; thus, its Hoare logic is not fault-avoiding as is
HTTcc, or other systems based on Separation logic. F ∗ relies on Z3 for automatic
discharge of verification conditions. In order to facilitate automation, its assertion
logic is a first-order fragment supported by Z3. F ∗ does not consider callcc, or
other abstractions required by it, such as Σ-types over specifications.

CPS translation of HTTcc CPS translation in the case of dependent types
has been studied by Barthe and Uustalu (Barthe & Uustalu, 2002) who show the
impossibility of CPS-translating dependent inductive and Σ-types. As HTTcc
essentially relies on Σ-types to encode nested Hoare triples – as inhabitants of the
Σ•SK type – it seems impossible to present HTTcc as a CPS translation into a
callcc-free fragment of HTTcc.

Roll-backing vs. persistent state Unlike the case of the algebraic callcc
in (Jaskelioff, 2009), where the state is rolled back when the continuation is
restored by abort, we chose to make the changes in the state persistent, as we
believe it is a more reasonable approach to an imperative-style dynamic state. A
direct consequence of this decision is the need for providing the Rf annotation,
although we believe it is a fair trade-off.

2.8 Summary

This chapter presented a higher-order type theory for verification of programs
with call/cc and abort control operators. The implemented theory, that we
have named HTTcc, supports mutable state in the style of Separation logic, and,
to the best of our knowledge, is the first Hoare logic or type theory to support
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the combination of higher-order functions, mutable state and control operators.
The support for mutable state comes with a twist, however. While our assertion
logic embeds separating conjunction ∗, we used large footprint specification style,
which we found necessary to relate heaps captured with the continuation to heaps
at the point of a jump. We use algebraic control operators, initially introduced
by Jaskelioff (Jaskelioff, 2009), which we here adapt to non-rollbackable state.
We argue that in practice, the algebraic operators require less manual program
annotations, than the non-algebraic variants. We have implemented HTTcc as
a shallow embedding in Coq, and verified a number of characteristic example
programs that use callcc. The implementation of the logic and the case studies
is available online (Delbianco & Nanevski, 2017).
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Concurrency
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Preamble

Arguments about correctness of a concurrent data structure are typically carried
out by using the notion of linearizability (Herlihy & Wing, 1990) and specifying
the linearization points of the data structure’s procedures. Such arguments are
often cumbersome as the linearization points’ position in time can be dynamic
(depend on the interference, run-time values and events from the past, or even
future), non-local (appear in procedures other than the one considered), and
whose position in the execution trace may only be determined after the considered
procedure has already terminated.

In Chapter 4, we propose a new method, based on an existing separation-style
logic—FCSL, described in Chapter 3—, for reasoning about concurrent objects
with such linearization points. We embrace the dynamic nature of linearization
points, and encode it as part of the data structure’s auxiliary state, so that it
can be dynamically modified in place by auxiliary code, as needed when some
appropriate run-time event occurs. We name the idea Linking-in-time, because
it reduces temporal reasoning to spatial reasoning. For example, modifying a
temporal position of a linearization point can be modeled similarly to a pointer
update in separation logic. Furthermore, the auxiliary state provides a convenient
way to concisely express the properties essential for reasoning about clients of such
concurrent objects. We illustrate the method by verifying (mechanically in Coq)
an intricate optimal snapshot algorithm due to Jayanti (Jayanti, 2005), together
with some concurrent clients of the snapshot data structure.

The contents of this part of the thesis are based in the following papers,
coauthored by the author:

• Germán Andrés Delbianco, Ilya Sergey, Aleksandar Nanevski and Anindya
Banerjee. Concurrent Data Structures Linked in Time. In 31st European
Conference on Object-Oriented Programming, ECOOP 2017, June 19–23,
2017, Barcelona, Spain. LIPIcs 74, pages 8:1–8:20. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2017.

• Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey and Germán Andrés
Delbianco: Communicating State Transition Systems for Fine-Grained
Concurrent Resources. In Programming Languages and Systems - 23rd
European Symposium on Programming, ESOP 2014, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS
2014, Grenoble, France, April 5–13, 2014, Proceedings, volume 8410 of
LNCS, pages 290—310. Springer, 2014.

Chapter 4 extends the original paper (Delbianco et al. , 2017a) by incorporating
the appendices from the extended version of the paper together with an updated
and more thorough discussion section. The Coq developments presented in this
chapter, together with full FCSL sources were unanismously validated as an
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artifact by ECOOP’s AEC, which is available online on the DARTS artifact
series (Delbianco et al. , 2017b).

Chapter 3 summarizes the development of FCSL presented in the original
paper (Nanevski et al. , 2014a) and incorporates the formal details about the logic
from an online extended version (Nanevski et al. , 2014b).
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3
FCSL: A Fine-Grained Concurrent Separation Logic

This chapter presents a novel model of concurrent computations with shared mem-
ory and provide a simple, yet powerful, logical framework for uniform Hoare-style
reasoning about partial correctness of both coarse- and fine-grained concurrent pro-
grams. We call this framework FCSL, which stands for Fine-grained Concurrent
Separation Logic. The key idea behind FCSL is to specify arbitrary resource proto-
cols as communicating state transition systems (STS) that describe valid states of
a resource and the transitions the resource is allowed to make, including—but not
limited to!—transfer of heap ownership. By reasoning in terms of communicating
STS, the logic makes it easy to crystallize behavioural invariants of a resource.

Thus, FCSL takes the classical rules from Concurrent Separation Logic
(CSL) (O’Hearn, 2007; Brookes, 2007; Brookes & O’Hearn, 2016), such as scoped
resource allocation, and generalizes them to cope with fine-grained resource man-
agement. As a result, the user of the logic can give rich specifications to concurrent
objects, with complex and expressive environment interference interactions in the
style of Rely-Guarantee (Jones, 1983; Vafeiadis & Parkinson, 2007), albeit in a
concise, modular way. The ending result is a flexible framework which regains the
compositionality of CSL-style resource management.

Following the methodology of HTT and HTTcc, FCSL has been formalized
as a shallow embedding in Coq (FCSL, 2017) and has been used to prove the
correctness of different concurrent data structures, with varying complexity and
correctness criteria, in the same unified setting: FCSL has been used to verify both
coarse-grained lock-based structures (Nanevski et al. , 2014a) and fine-grained
concurrent objects such as snapshots (Delbianco et al. , 2017a; Sergey et al. , 2015b),
stacks (Sergey et al. , 2015b) and other advanced objects (Sergey et al. , 2016), and
to prove the correctness of concurrent graph algorithm implementations (Sergey
et al. , 2015a).
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54 3.1. Overview

incr n : {σ s = ∅ ∧ µ s = ���Own ∧ α s = 0} ( )

{σ′s = ∅ ∧ µ′s = ���Own ∧ α′s = n}@ LCSL {lock,lk ,I}
=̂ do ( lock;

r ← inject (read x);

inject (write x (r + n));

unlock)

Figure 3.1: Coarse-grained concurrent incrementer in FCSL, incr

3.1 Overview

Specifications FCSL specifications take the form of Hoare-type ascription
e : {P}A {Q}@ C expressing that the A-value returning computation e has a
precondition P and a postcondition Q over a state space and under transitions
defined by the concurrent resource C, which in FCSL takes the role of a resource
context from CSL. In a similar way we have done for HTTcc type ascription in
Chapter 2, we might need logical variables to specify our triples. In those cases,
we make the context of logical variables explicit in the type:

e : [Γ]. {P}A {Q}@ C

Note that, unlike standard Hoare-style logics where logical variables are global to
a specification or a correctness proof, FCSL logical variables scopes are delimited
to a given triple. The reason behind this requirement is to enable the specification
of recursive procedures, where a logical variable may be instantiated differently
in each recursive call (Kleymann, 1999). Moreover, logical variables can only
appear in P and Q, i. e. they do not appear in program e, nor the type A nor the
concurrent resource C.

The state s of a concurrent resource C in FCSL always consists of three distinct
auxiliary variables that we name ss, so and sj, such that s = (ss, sj, ss). These
stand for the abstract self, other, and joint projections of the state. However, the
user can pick the types of these variables based on the application. It is essential
that as and ao have a common type, which moreover, exhibits the algebraic
structure of a partial commutative monoid (PCM). The subjective assertions
(or getters) constrain the value of one state component, assuming others to be
existentially quantified over.

Coarse-Grained Incrementer We illustrate the specification language by
visiting the implementation of a coarse-grained concurrent incrementer (Owicki
& Gries, 1976; Ley-Wild & Nanevski, 2013) resource LCSL {lock,lk ,I}, whose main
method incr is presented in Figure 3.1. The resource LCSL {lock,lk ,I} consists of by a
lock lk which protects a shared heaplet h. A CSL-style resource invariant (O’Hearn,
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2007; Brookes, 2007; Brookes & O’Hearn, 2016) I is associated to the protected
heap h, I n h =̂ h = x 7→ a. The latter is used to define the state invariant of
LCSL {lock,lk ,I}, CohLCSL {lock,lk,I} , to be the states that satisfies the following assertion:

ρ j = lk 7→ b ·∪ h ∧ if b then h = ∅ ∧ µ s • µ o = Own

else I (α s + α o) h ∧ µ s • µ o = ���Own

We first describe the thread-relative assertions. The getter ρ j exposes the
fact that the joint heap owned by the resource contains a Boolean pointer lk
encoding a lock that protects the heap h. The getters µ s and µ o assert the self
(and respectively, other) ownership of the lock lk, taking values from the mutex
({Own,���Own}, •,���Own), where ���Own • m = m = m • ���Own and Own • Own is
undefined. Finally, the α s and α o getters project, respectively the self and other
cumulative contributions to the incrementer.

Then, the CohLCSL {lock,lk,I} asserts that if the lock lk is taken (b = true) then the
heap x 7→ is given away by the resource, and otherwise it satisfies the resource
invariant I. In either case, the thread-relative getters’ values µ s, µ o, α s, α o are
consistent with the resource’s joint view of lk and h through ρ j. Indeed, notice
how µ s, µ o and α s, α o are first •-joined and then related to b and h; the former
implicitly by the conditional, the latter explicitly, by the resource invariant I,
which is now parametrized by α o + α s, asserting then that x 7→ α s + α o.

We consider now the specification of incr in Figure 3.1: the function acquires
the lock to ensure exclusive access to x, increments x by n, and releases the lock.
The specification states that incr runs in an empty private heap—σ s = ∅ —the
lock is not owned—µ s = ���Own—by the calling thread initially, and will not be
owned in the end—µ′s = ���Own. The addition of calling thread to x increases from
0 to n, as witness by the getters α s = 0 in the precondition and α′s = n in the
postcondition. We use a VDM-like notation (Bjørner & Jones, 1978), using primed
getters in the postcondition, in order to distinguish pre-values and post-values in
the post-conditions, as both getters are allowed to appear in post-conditions1.

Programming Language FCSL uses monads to separate the purely functional
fragment of Coq to the imperative fragment of the logic, denoted by Hoare-types
{P}B {Q}@ C. In the example in Figure 3.1, we use x ← e1; e2 for monadic
bind (i.e. a sequential composition), which first executes e1, then binds the return
result to x before executing e2. We abbreviate with e1; e2 when x /∈ FV (e2). The
expression do e : {P}B {Q}@ C (potentially with logical variables) whenever
we want to explicitly ascribe the specification (P,Q) to e, rather than use the
tightest specification that the system infers for e. Such ascription will entail a
proof obligation that (P,Q) is valid for e, as we explain in Section 3.2. The
expression inject e allows us to lift operations from a smaller resource to a bigger

1This is a notational convention which is implemented in our Coq Files using a dedicated
logical variable in order to connect pre and post values.
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resource. lock and unlock are two operations from the LCSL {lock,lk ,I}resource
which acquire and release the lock lk , specified as follows:

lock : {σ s = ∅ ∧ µ s = ���Own ∧ α s = 0}( )

{∃ ao. σ
′
s = x 7→ ao ∧ µ′s = Own ∧ α′s = 0 ∧ α′o = ao}@LCSL {lock,lk ,I}

unlock : [as, ao]. {σ s = x 7→ as + ao ∧ µ s = Own ∧ α s = as ∧ α o = ao}( )

{σ′s = ∅ ∧ µ′s = ���Own ∧ α′s = as}@LCSL {lock,lk ,I}

lock assumes that lock is not taken, and that the self thread so far has added
0 to x. Thus, Note that acquire does not have to be atomic: as implemented, it
just spins on lk , and after acquisition, the heaplet x 7→ ao is transferred into the
private heap of self. ao must be existentially quantified, because other threads
may add to x while lock is spinning.

unlock assumes that lock is taken by self, and that prior to taking lock, self
and other have added 0 and ao to x, respectively. After acquiring x, self has
mutated it, so that its contents is as + ao. After releasing, x is moved back to
the resource’s control. The post-condition does not mention x nor the getter ρ j

for the joint heap resource, as the contents asserted by the latter are not stable.
Indeed, other thread may acquire the lock and change x after unlock terminates.
However, that thread cannot change the self view of x, α s, which is now set to as.

Parallel Composition The ability to choose user-defined PCM structures (in-
herited from SCSL (Ley-Wild & Nanevski, 2013)), makes it possible to define the
inference rule for parallel composition in a generic way:

Γ ` e1 : {P1}A {Q1}@ C Γ ` e2 : {P2}B {Q2}@ C
Γ ` e1 ‖ e2 : {P1 ~ P2} (A×B) {r. [r.1/r]Q1 ~ [r.2/r]Q2}@ C

Par

Here, ~ is defined over state predicates P1 and P2 as follows:

Definition 3.1 (Subjective Star). Given assertions P1, and P2, and a subjective
state s, we define FCSL subjective separating conjunction ~ as follows:

(ss, sj, so) |= P1 ~ P2 ⇐⇒ ∃x1 x2. ss = x1 • x2 ∧ (x1, sj, x2 • so) |= P1

∧ (x2, sj, x1 • so) |= P2

The inference rule, and the definition of ~, formalize the intuition that when
a parent thread forks e1 and e2, then e1 is part of the environment for e2 and
vice-versa. This is so because the self component as of the parent thread is split
into x1 and x2; x1 and x2 become the self parts of e1, and e2 respectively, but
x2 is also added to the other component ao of e1, and dually, x1 is added to the
other component of e2. For example, in the case of an assertion using the heap
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1 {σ s = ∅ ∧ µ s = ���Own ∧ α s = 0}
2 {σ s = ∅ ·∪ ∅ ∧ µ s = ���Own •���Own ∧ α s = 0 + 0}
3 {(σ s = ∅ ∧ µ s = ���Own ∧ α s = 0) ~ (σ s = ∅ ∧ µ s = ���Own ∧ α s = 0)}

4a {σ s = ∅ ∧ µ s = ���Own ∧ α s = 0}
5a incr i

6a {σ s = ∅ ∧ µ s = ���Own ∧ α s = i}

4b {σ s = ∅ ∧ µ s = ���Own ∧ α s = 0}
5b incr j

6b {σ s = ∅ ∧ µ s = ���Own ∧ α s = j}
7 {(σ s = ∅ ∧ µ s = ���Own ∧ α s = i) ~ (σ s = ∅ ∧ µ s = ���Own ∧ α s = j)}
8 {σ s = ∅ ∧ µ s = ���Own ∧ α s = i+ j}

Figure 3.2: FCSL proof outline for two =̂ do (incr i ‖ incr j).

getters σ from the specification of incr above, we have:

σ s = x 7→ a ·∪ y 7→ b ∧ σ o = z 7→ c

=⇒
(σ s = x 7→ a ∧ σ o = z 7→ c ·∪ y 7→ b) ~ (σ s = y 7→ b ∧ σ o = z 7→ c ·∪ x 7→ a)

The implication encodes the idea of a forking shuffle from Rely-Guarantee (Jones,
1983; Vafeiadis & Parkinson, 2007), but via states, rather than transitions as in
RG. It allows us to use the same concurrent resource C to specify the transitions
of both e1 and e2 in Par, much like the parallel composition rule of CSL uses the
same resource context. Essentially, we rely on the recombination of thread views
to select the transitions of C available to each of e1 and e2, instead of providing
distinct transitions for e1 and e2 as in ParRG. We commonly encounter cases
where the other views are existentially abstracted. In those cases, where we only
have self assertions we can derived a simplified bi-implication. For instance, using
the getters σ s, µ s, and α s from the specification of incr above, we derive:

σ s = x 7→ a ·∪ y 7→ b ∧ µ s = m1 • m2 ∧ ∧α s = n+m

⇐⇒ (3.1)

(σ s = x 7→ a ∧ µ s = m1 ∧ α s = n) ~ (σ s = y 7→ b ∧ µ s = m2 ∧ α s = m)

Many logics that employ auxiliary state, going back to Owicki and Gries (Owicki
& Gries, 1976), require that their procedures are annotated for a specific number
and forking pattern of interfering threads. When this pattern changes, the
programs have to be re-annotated, and proofs redone. But this is not the case in
FCSL. In order to illustrate this claim, we now show how the Par rule is used
to prove that the parallel combination of incr i ‖ incr j increments x by i+ j in
Figure 3.2. Notice we omit the resource annotation @LCSL {lock,lk ,I} from the proof
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outline, as it is does not change throughout the proof: this will be a standard
practice throughout all the FCSL proof outlines presented in this thesis.

The proof proceeds at follows: on line 2, we use the unit of the PCMs to
express the contents of the getters as unions. Then, we use the bi-implication (3.1)
on line 3 to move between ~-separated assertions and •-joined views. The proof
is compositional in the sense that the same verification of incr is used as a black
box in both parallel threads (through lines 4a–6a and, respectively, 4b–6b), with
each sub-proofs merely instantiating the parameter n with i and j respectively.
On line 7, we recover the ~-separated assertion as a post-condition of the Par

rule. Finally, we use the bi-implication (3.1) in the opposite direction to gather
the contributions on line 8.

Framing Being a separation-like logic, FCSL provides a frame rule. The frame
rule can be seen then as a special case of the parallel composition rule, obtained
when e2 is taken to be the idle thread:

Γ ` e : {P}A {Q}@ C R stable C
Γ ` e : {P ~ R}A {Q ~ R}@ C

Frame

Since R describes both the pre-state and post-state, it has to be stable under C
that is, it determines a subset of C’s states that remains fixed under the interference
of other threads (see Definition 3.27). We illustrate the use of the Frame rule a
small client which composes two incrementer calls sequentially:

twice n : {σ s = ∅ ∧ µ s = ���Own ∧ α s = k} ( )

{σ′s = ∅ ∧ µ′s = ���Own ∧ α′s = 2 ∗ n}@ LCSL {lock,lk ,I}

=̂ do (incr n; incr n; )

The proof is presented in Figure 3.3. On line 4, we exploit the bi-implication (3.1),
to frame the contribution of the first call with ~. The assertion:

(σ s = ∅ ∧ µ s = ���Own ∧ α s = i)

1 {σ s = ∅ ∧ µ s = ���Own ∧ α s = 0}
2 incr n;

3 {σ s = ∅ ∧ µ s = ���Own ∧ α s = n}
4 {(σ s = ∅ ∧ µ s = ���Own ∧ α s = 0) ~ (σ s = ∅ ∧ µ s = ���Own ∧ α s = n)}
5 incr n;

6 {(σ s = ∅ ∧ µ s = ���Own ∧ α s = n) ~ (σ s = ∅ ∧ µ s = ���Own ∧ α s = n)}
7 {σ s = ∅ ∧ µ s = ���Own ∧ α s = 2 ∗ n}

Figure 3.3: FCSL proof outline for twice n =̂ do (incr n; incr n).
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will be trivially stable as it only asserts self values. Then, we apply the Frame

rule to run incr n again, in order to get as a result the ~-separated assertion
on line 6. Finally, we apply the bi-implication 3.1 to gather the contributions
together, asserting that α′s = 2 ∗ n in the end. It should be noticed that we do
not use VDM-style primed notation in the proof outline to avoid an explosion of
primes on getters and instead we resort to the standard Hoare-Logic practice of
introducing existentially quantified naming new logical variables when we want to
remember a particular value.

Entanglement and Injection In FCSL fine-grained resources can be combined,
allowing to combine “smaller” resources into “bigger” ones, and re-using their
methods and specifications modularly. For example, if P is the FCSL resource
for private heaps and L{lock,lk ,I} is the FCSL resource for a lock (with a lock, lock
pointer lk and protected heap described by the coarse-grained resource invariant
I), we can construct the LCSL {lock,lk ,I} resource as an entanglement:

LCSL {lock,lk ,I} = P o L{lock,lk ,I}

The entanglement can be iterated, to obtain a STS for two coarse-grained resources,
and so on. In this way, FCSL fine-grained resources generalize the notion of resource
context from the Resource rule in CSL (O’Hearn, 2007), with entanglement
modelling the addition of new resources to the context. We will dwell further into
the formal details about entanglement and resource combination in Section 3.3.5.

We now explain the inject e command which allows us to lift commands from
a smaller resource U to an extended resource U o V. The command is governed
by the Inject rules, described as follows:

e : {p}A {q}@ U R stable V
inject c : {P ∗ R}A {Q ∗ R}@ U o V

Inject

Reading the rule bottom-up, it says we can ignore V , as V ’s transitions and e
operate on disjoint resources. V may change U ’s state by communication, but the
change is bounded by U ’s external transitions. Thus, we are justified in verifying
e against U alone. In this sense, Inject may be seen as generalizing the rule for
resource context weakening of CSL.

Whereas in CSL the separating conjunction * splits the heap, in FCSL the
connective ∗ splits the state according to the components of U and V, P and
Q describe the part controlled by U , and R describes the part controlled by V.
Formally:

Definition 3.2 (Separating Conjunction). Given assertions P1, and P2, and a
state s, we define the ∗ separating conjunction in FCSL as:

s |= P1 ∗ P2 ⇐⇒ ∃ s1 s2. s = s1 ·∪ s2 ∧ s1 |= P1 ∧ s2 |= P2

where the separated union of FCSL states is given on Definition 3.11
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1 {σ s = ∅ ∧ µ s = ���Own ∧ α s = 0}
2 lock;

3 {∃ao. σ s = x 7→ ao ∧ µ s = Own ∧ α s = 0 ∧ α o = ao}
4 r ← inject (read x);

5 {∃ao. σ s = x 7→ ao ∧ r = ao ∧ µ s = Own ∧ α s = 0 ∧ α o = ao}
6 inject (write x (r + n));

7 {∃ao. σ s = x 7→ (n+ ao) ∧ r = ao ∧ µ s = Own ∧ α s = 0 ∧ α o = ao}
8 unlock

9 {σ s = ∅ ∧ µ s = ���Own ∧ α s = n}

Figure 3.4: A proof outline for inr n in FCSL

We will illustrate the use of the Inject rule, by verifying incr. First, we need
to specify the atomic commands write and read from the private state resource
P , which will be lifted to LCSL {lock,lk ,I} via inject

read x : [v]. {σ s = x 7→ v}A {σ′s = x 7→ v ∧ r = v}@ P
write x : {σ s = x 7→ }A {σ′s = x 7→ v ∧ r = v}@ P

Figure 3.4 presents the proof outline for incr n in FCSL. Inject is used twice,
to lift read and write from P to CSLlock,lk,I . These commands manipulate the
contents of priv, but retain the framing predicate µ s = Own ∧ α s = 0 ∧ α o = ao.
This predicate is stable with regard to L{lock,lk ,I}. Intuitively, because self owns
the lock, other threads cannot acquire x and add to it. Thus, no matter what
steps the environment performs, the assertion α o and the framed predicate remain
invariant.

3.2 FCSL Rules and Verification Framework

In the previous section we have given an informal presentation of FCSL. In this
section we will present the typing rules for the FCSL language together with the
properties and lemmas that constitute our verification framework.

Again, it should be noticed that the latter logic is implemented as a shallow
embedding in CiC in a similar way to the implementation of HTTcc in Chapter 2.
Therefore, we will concentrate just in the effectful rules FCSL which implement
effectful commands e : {P}A {Q}@ C, ignoring the pure inherited from the
embedding into CiC as it is standard. Moreover, we will distinguish between
computational inference rules which correspond to commands in FCSL syntax and
are thus implemented through language definitions, and structural or logical rules
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which are presented as derived lemmas2.

3.2.1 FCSL Inference Rules

FCSL’s judgements are hypothetical under a context Γ that maps CiC variables
x, v to their pure types A,B and commands e to their specifications of type
{P}A {Q}@ U . We allow each specification to depend on the variables declared
to the left. Γ does not bind logical variables, however. As we have mentioned
before, we limit the scope of logical variables in FCSL to the Hoare-types in which
they appear. We note that the assertions and the annotations in the rules (e. g., Φ
in the Hide rule) may freely use the variables in Γ. To reduce clutter, we silently
assume the checks that all such specification level-entities are well-typed in Γ. We
have already discussed rules Par and Hide in Section 3.1. We describe the rest of
the rules in Figure 3.5 in the sequel.

Monadic Combinators FCSL is implemented as a monadic extension of Coq.
The monadic bind (i. e. sequential composition) x← c1; c2 runs c1 then substitutes
its result v1 for x to run c2 (we write c1; c2 when x 6∈ FV(c2)). The associated Seq

is, then, a standard Hoare logic rule for sequential composition. The Ret rule says
that the value returning command ret is safe to run in any state satisfying a stable
precondition. After ret returns, the state is left unchanged, modulo environment
interference. The Fix rule implements the usual typing for recursive procedures in
Hoare Type Theories (cf.. HTTcc’s typing rule for Fix in Figure 2.4), requiring
that a Hoare-type specification can be established for the procedure body, under
a hypothesis that the recursive calls satisfy the same type. This is type invariant
is akin to the role of loop invariants in standard Hoare/separation logics.

Conseq The rule Conseq uses the judgement Γ ` (P1, Q1) v (P2, Q2), which
generalizes the customary side conditions P2 =⇒ P1 for strengthening the precon-
dition and Q1 =⇒ Q2 for weakening the postcondition. We use this rule whenever
we want to explicitly ascribe the specification (P,Q) to e, rather than use the
tightest specification that the system infers for e.

In first order Hoare logics, the logical variables have global scope, so the
standard pre-strengthening, post-weakening implications over P1, P2 and Q1, Q2

2This presentation deviates from the one in the original paper (Nanevski et al. , 2014a). The
presentation in the latter was written aimed at an audience familiar with program logics (for
concurrency), but not necessarily keen on reading about Hoare-Types or shallow embeddings
in Coq. In this thesis manuscript, however, we favour the presentation in this section as it
has several advantages: (1) it is consistent with the presentation of HTTcc in Chapter 2 and
thus emphasizes the common approach to the design and implementation of program logics,
(2) it simplifies the presentation of the semantics of the programming language, and (3), there
is no need to present trivial structural rules, e. g. Hyp or App (cf. (Nanevski et al. , 2014a,
Figure 2)), as either they are immediately derived from the underlying metatheory of Coq, or
could be implemented easily as Lemmas 3.2.2.
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Γ ` e1 : {P}B {R}@ C Γ, x:B ` e2 : {[x/r]R}A {Q}@ C x 6∈ FV(Q)

Γ ` x← c1; c2 : {P}A {Q}@ C
Seq

Γ ` e1 : {P1}A {Q1}@ C Γ ` e2 : {P2}B {Q2}@ C
Γ ` e1 ‖ e2 : {P1 ~ P2} (A×B) {r. [r.1/r]Q1 ~ [r.2/r]Q2}@ C

Par

Γ ` v : A P stable C
Γ ` ret v : {P}A {r. P ∧ r = v}@ C

Ret

Γ ` e : {P1}B {Q1}@ C (P1, Q1) v (P2, Q2)

Γ ` do e : {P2}A {Q2}@ C
Conseq

Γ ` f : (Πx:A. {P x} (B x) {Qx}@ C)→ (Πx:A. {P x} (B x) {Qx}@ C)
Γ ` fix f : Πx:A. {P x} (B x) {Qx}@ C

Fix

Γ ` e : {P}A {Q}@ U R stable V
Γ ` inject e : {P ∗ R}A {Q ∗ R}@ U o V

Inject

Γ ` e : {σ s = h ∗ P}A {σ′s = h′ ∗ Q}@ (P o U) o V
Γ ` hideΦ,g e : {Ψ g h ∗ (Φ (g)−−∗P )}A

{∃ g′. Ψ g′ h′ ∗ (Φ (g′)−−∗Q)}@ P o U

where Ψ g h = ∃ k:heap. σ s = h ·∪ k ∧ Φ (g) ↓ k

Hide

a = (U , A,Prea,Rela) is an action
Γ ` (Prea ∧ this w, λw′. (w,w′, r) ∈ Rela) v (P,Q) P,Q stable U

Γ ` act a : {P}A {Q}@ U
Action

Figure 3.5: Inference rules for FCSL commands. We assume that predicates
P , R, Q, etc. in an FCSL ascription e : {P}A {Q}@ C assert properties over
states whose labels coincide with those of C. In the same spirit, we consider
that resource operations U o V are valid, and therefore their sets of label are
disjoint (cf. Definition 3.38). The P stable U assertion recovers the familiar
notion of stability under environment interference, and it is formally defined in
Definition 3.27. FCSL actions are defined in Definiton 3.28. The v ordering
between specifications used in rules Conseq and Action is defined in Definition ??

62



Chapter 3. FCSL: A Fine-Grained Concurrent Separation Logic 63

suffice. In FCSL, however, logical variables scope locally over Hoare triples, and
this scope has to be reflected in the semantic definition of v by introducing
quantifiers. The definition is similar to the one by Kleymann (Kleymann, 1999).

Definition 3.3 (Conseq). The Hoare ordering on two specifications (P1, Q1) and
(P2, Q2) is defined as:

(P1, Q1) v (P2, Q2) ⇐⇒
∀w w′. (w |= ∃v̄2. P2 =⇒ w |= ∃v̄1. P1) ∧

(∀v̄1 r. w |= P1 =⇒ w′ |= Q1) =⇒ (∀v̄2 r. w |= P2 =⇒ w′ |= Q2)

where v̄i = FLV(Pi, Qi) denotes the free logical variables from each pre- and
postcondition pair.

Action Actions perform atomic steps from state to state, such as, e. g., realigning
the boundaries between, or changing the contents of self, joint and other state
components. The actions thus serve to synchronize the changes to the underlying
machine state (i. e., heaps), with the changes to the logical information required
for verification (i. e. auxiliary or ghost state: as, ao, etc.). An action is a tuple
a = (C, A,Prea,Rela) as it will be specified later on in Definition 3.28. We explain
briefly the contents of the 4-tuple, and delay the formal treatment of actions to
Section 3.3.4. The type A denotes the type of the return value of the command.
The predicate Prea denotes the set of states in which is safe to execute the action
a. The relation Rela realizes the effect of the atomic action a, connecting the pre-
and post-states of the action and the returned value. It should be noticed that
Prea and Rela are given in a large-footprint style, giving fully the heaps and the
auxiliaries they accept.

The rule Action takes an action a and checks that a satisfies that Prea can
be strengthened into P and Rela can be weakened into Q. As Rela is not a
postcondition, but rather a relation taking input states, we first introduce a
fresh logical variable w to name the input state using a predicate this. Then the
predicate expressing post states for the action is computed out of Rela and w, and
it is this predicate which is weakened into Q. Again, we require that P and Q are
stable assertions under U ’s interference, in order to to account for the possibility
that another thread modifies the shared state of the resource just before—or
just after, or both—the atomic action a is executed. We implicitly require also
that the action a is a proper action (Proposition 3.29) and moreover, that it is
operational (Definition 3.35).

The rule Action does not prescribe however specific guidance on how an action
manipulates the logical state, as long as it satisfies the v entailment. In this sense,
the rule is generic, as it delegates the operational aspect of changing the state
atomically to a user-selected action for the particular resource C. As an example
we consider the action release, which implements the command unlock used in
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Figure 3.1 to release a lock and transfer the pointer x from a private heap of a
thread to the ownership of the lock resource:

Example 3.4 (release action). The action release for the LCSL {lock,lk ,I} resource
is a tuple release = (LCSL {lock,lk ,I}, ( ),Prerls,Relrls) such that:

w ∈ Prerls ⇐⇒ w = priv 7→ [x 7→ (as + a′s + ao) ·∪ hs | ∅ | ho] ·∪
lock 7→ [(Own, a′s) | lk 7→ true | (���Own, ao)]

(w,w′, r) ∈ Relrls ⇐⇒ w = priv 7→ [x 7→ (as + a′s + ao) ·∪ hs | ∅ | ho] ·∪
lock 7→ [(Own, a′s) | lk 7→ true | (���Own, ao)] ∧

w′ = priv 7→ [hs | ∅ | ho] ·∪
lock 7→ [ (���Own, as + a′s) |

lk 7→ false ·∪ x 7→ (as + a′s + ao) |
(���Own, ao)] ∧

r = ( )

This action is defined over the entangled resource LCSL {lock,lk ,I} = PoL{lock,lk ,I}
as it transfers the ownership of (x 7→ −). It can be executed in states in which
the lock is taken by the self thread, and the pointer x is in the private heap. The
contents of x is as + a′s + ao, for some (existentially quantified) as,a

′
s and ao, so

that once x is transferred to the ownership of the lock resource, it satisfies the
resource invariant. Once the states are flattened into heaps (cf.. Definition 3.12),
the Prerls and Relrls components of release reduce to predicates and relations on
heaps which describe the behaviour of a memory mutation on the pointer lk . Thus,
operationally, release can be implemented as a single mutation to the lk pointer,
and satisfies the operational requirement on actions3.

We apply now the release action to define the unlock command introduced in
Section 3.1:

unlock : [j, k]. {σ s = x 7→ j + k ∧ µ s = Own ∧ α s = j ∧ α o = k}( )

{σ′s = ∅ ∧ µ′s = ���Own ∧ α′s = j}@LCSL {lock,lk ,I}
=̂ do (act release)

We will explain now how its specification arises from the rule Action. First,
we have already established that release is a proper and operational action. Then,
we need to assert the stability of the pre- and postconditions under LCSL {lock,lk ,I}
environment interference.

3We deliberately leave aside here the proofs that release satisfies the formal requirements in
order to be a proper FCSL action from Proposition 3.29, as they are straightforwards. In our
Coq implementation, however, we do not have this luxury: actions are implemented through
a type class (technically, a canonical structure) which requires such proofs in order to accept
release as a proper instance.
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As for the precondition, we know that if the self thread owns the lock lk , as
witnessed by µ s = Own, other threads cannot increase their contributions, so the
assertion α o = ao is valid for all possible steps the environment can perform and
also the value of self getters is fixed under other steps (cf.. the formal definition
of RU in Definition 3.26). The postcondition is trivially stable after the latter
fact, given that it only specifies assertions using self getters.

The interesting step here is to show show that

(Prerls ∧ this w, λw′. (w,w′, r) ∈ Relrls) v (P ′, Q′)

where P ′ and Q′ are the specifications above. For the pre-strengthening part of v,
it boils down to proving that w |= P ′ =⇒ w ∈ Prerls, i. e. that a state which
satisfies the precondition of unlock is safe to execute release. This is can be done
immediately given the specification and the definition rls in Example 3.4 above.
It suffices to instantiate as = 0, a′s = j and ao = k. As for the post-weakening
part, we need to show that if w is a state satisfying the pre-condition, then
(w,w′, ( )) ∈ Relrls =⇒ w′ |= Q′, i. e. we need to show that the end-state after
executing the atomic action release satisfies the post-condition Q′. Again, this is
done straightforwards, using the same instances as before.

Hide In FCSL, Hiding refers to the ability to construct a fine-grained resource
V from the underlying thread-private heap (governed by the resource P), in the
local scope of a thread e. Thus, the children forked by e can share and interfere
with V ’s state, respecting V ’s transitions, but V is hidden from the environment of
the parent thread c. In this environment, the changes in the state done following
V ’s rules will be reflected as changes to (a part of) the private heap of c. In this
sense, hiding generalizes resource rules of Concurrent Separation Logic (O’Hearn,
2007) to FCSL fine-grained resources.

Since creating the resource V requires to consume a chunk of private heap, the
rule Hide requires the overall resource to support private heaps, i. e., to be an
entanglement P oU , with an arbitrary resource U . Notice that we introduce U so
as to be able to nest calls to the Hide rule, as well as to provide resources other
than P . We can always instantiate U with the empty resource E (Definition 3.43),
for which P o E = P (Lemma 3.44).

As we have mentioned before for Hide, the rule Hide also assumes a formation
lemma on the entanglement operations which requires that they are well defined,
and therefore U , P , and U should have disjoint label sets (cf. Definition 3.38).

The formal properties of hiding and the annotation Φ are presented in Sec-
tion 3.3.5. For now, we give an intuition of its role creating the new resource
V out of P. Φ(g) corresponds to a set of concrete states of a resource V to be
created. Its parameter g is a meaningful abstraction of such a set (e. g., (ms, as)
for L{lock,lk ,I}) and can be thought of as an “abstract state”. The annotation g
(which we colloquially refer to as the seed for Φ) is the initial abstract state: upon
creation, the state of V satisfies Φ (g).
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1 {σ s = lk 7→ false ·∪ x 7→ 0}@P
2 {Ψ (���Own, 0) ∅}@P
3 {Ψ (���Own, 0) ∅ ∗ (Φ (���Own, 0)−−∗ (µ s = ���Own ∧ α s = 0))}@P o E
4 hideΦ,(��Own,0) { σ s = ∅ ∧ µ s = ���Own ∧ α s = 0}@LCSL {lock,lk ,I}

5 incr n

6 {σ s = ∅ ∧ µ s = ���Own ∧ α s = n}@LCSL {lock,lk ,I}

7 {∃ g2. Ψ g2 ∅ ∗ (Φ g2−−∗ (µ s = ���Own ∧ α s = n))}@P o E
8 {Ψ (���Own, n) ∅}@P
9 {σ s = lk 7→ false ·∪ x 7→ n}@P

Figure 3.6: A proof outline for hide (incr n). Notice that on line 4,
LCSL {lock,lk ,I} = P o E o L{lock,lk ,I}, which allows us to apply the Hide rule.

In the premise of the Hide rule, the assertion σ s = h and σ′s = h′ describe the
behaviour of e on the private heaps of P, described as transition from the heap
h to the heap h′. Moreover, P and Q specify the behaviour of e with regard to
components of U and V only!— as per the definition of the separating conjunction
on resources described in Section 3.1. In the conclusion, Ψ g h and Ψ g′ h′ map
the abstract states g and g′ into private heaps h and h′. This follows from the
definition of Ψ, in which Φ (g) ↓ k indicates that states satisfying Φ (g) flattens
to the private heap k (see Definition 3.13). Thus, changes that e imposes on
the abstract states on V, will be seen as changes to the private heaps in the
environment of hideΦ,g e. In the conclusion, the assertion Φ (g)−−∗ p states that
attaching any state satisfying Φ (g) to the chunk of the initial state identified
by the labels from U produces a state in which P holds, “compensating” for the
component k in Ψ. That is, P corresponds to an abstract state g and c can be
safely executed in such a state. The rule guarantees that if e terminates with a
postcondition Q, then Q corresponds to some abstract state g′.

We illustrate the use of Hide with a proof outline for the following program
hideΦ,g (incr n) in Figure 3.6. The program implements the functionality of
creating a spin-lock : outside the resource scope, we will start with the resource
P , and the private heap containing pointers lk and x. Then, we will use hide to
install the L{lock,lk ,I} resource, which makes x a shared pointer, protected by the
lock lk . Then it runs incr(n) in the new context, after which the local resource
is disposed, and lk and x return to the private heap. Finally, we prove that if
initially x 7→ 0, then in the end x 7→ n.

The abstract states are pairs (ms, as), encoding of the self views of the concrete
state of lock. Φ maps a self view into a predicate on the full state of lock, specifying
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joint and other views as well.

Φ (ms, as) =̂ µ s = ms ∧ α sas ∧ µ o = ���Own ∧ α s = 0 ∧
if ms = ���Own then ρ j = lk 7→ false ·∪ x 7→ as

else ρ j = lk 7→ true

We choose the initial state g = (ms, as) = (���Own, 0) on line 4, entailing that the
lock is installed with lk unlocked, and x set to 0. Then, we observe that:

Φ (���Own, n) ↓ lk 7→ false ·∪ x 7→ n

ad thus we have Ψ (���Own, 0) ∅ = σ s = lk 7→ false ·∪ x 7→ 0 on line 2 and
Ψ (���Own, n) ∅ = σ s = lk 7→ false ·∪ x 7→ 9 on line 9. Finally, we use the fact
that Φ (ms, as)−−∗(µ s = m′s ∧ α s = a′s) is equivalent to (ms, as) = (m′s, a

′
s) in the

label-free state.
The soundness of Hide depends on a number of properties and definitions that

will be presented later on Section 3.3.5. In particular, Φ satisfies the properties
described in Proposition 3.46. The complete proofs are given in our mechaniza-
tion (FCSL, 2017).

3.2.2 Structural rules of FCSL

In this chapter’s Overview (§ 3.1) we introduced FCSL’s Frame rule. However,
we have not listed that rule, nor any other structural rule in Figure 3.5. This
is because, as we did for HTTcc in Chapter 2, we follow the philosophy of later
HTT implementations (Nanevski et al. , 2010) which distinguish between a core
of commands whose inference rules are instrumented, i. e. implemented in Coq
via a definition which implements their semantics, and structural rules for the
logic, which are implemented as derived lemmas.

In order to present the latter, we will present first an alternative type for
computations e : ProgC A which strips FCSL commands of their specifications. In
Section 3.4.1, we will define this type to give a denotational model of the logic’s
commands. Full specifications are recovered by combining this bare type of com-
putations with a predicate transformer, verify, which realizes FCSL’s verification
framework: a FCSL assertion will be presented as in Coq as a proof goal

verifyU e Q w

where w is the current state, e : ProgC A and Q is a post-condition of type Q :
A→ state→ Prop. In Section 3.4, the implementation of verify (Definition 3.62)
will show that the partial assertion verifyU e Q entails the computation of the
weakest precondition for the command e.

However, we do not need to unfold the definition of verify to reason with
clients. A user of the logic discharges proof obligations by the application of
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several lemmas that allows us to reason in terms of verify assertions. Thus, we
keep the predicate transformer verify abstract, and rely on these structural rules
implement derived lemmas that enable logical manipulation of the goal and also
reflect internal semantic properties to the proof outline.

VrfCoh : verifyU e Q w =⇒ w ∈ CohU

VrfStable : verifyU e Q w =⇒ Q stable U
VrfPost : (∀ r s. s ∈ CohU =⇒ Q1 r s =⇒ Q2 r s) =⇒

verifyU e Q1 w =⇒ verifyU e Q2 w
Frame : R stable U =⇒ R [p | wj | wo ◦ wj] =⇒

verifyU e Q (w . p) =⇒
verifyU e (λ r.Q r ~ R) (w / p)

Conjunction : verifyU e P w =⇒ verifyU e Q w =⇒ verifyU e (P ∧Q) w

Implication : (∀ s. s ∈ CohU =⇒ P s =⇒ verifyU e Q s) =⇒
verifyU e (λ rm. P m =⇒ Q rm) w

Figure 3.7: Selected FCSL structural rules.

Figure 3.7 presents a subset of these lemmas, all of which have been proved
correct in our Coq implementation. The VrfCoh and VrfStable lemmas are
example of lemmas that reflects internal properties of the commands or the
resources to the verification task. The former says that if a state is in verifyU e Q,
then it must also be in the set of valid states of the resource U , CohU . In
other words, our proof outlines are only concerned with states that are valid
for the underlying resource. The latter, VrfStable reflects the fact that FCSL
operational semantics interleaves self with environment steps and thus we need to
provide stable specifications for verify. This fact will become more evident when
we present the definition of the verify predicate together with the semantic of
FCSL Hoare-triples later in Section 3.4.

The other structural lemmas allow us to manipulate the current assertion
of a proof outline. The vrfPost lemma, for instance, allows us to weaken the
postcondition Q1 into Q2 if the first implies the second for every return value r
and state s. When proving Q2 out of Q1, it is sound to further assume w ∈ CohU ,
because verify is only concerned with states that are valid for the resource U . The
Conjunction and Implication rules are straightforward implementations of the
corresponding Hoare/separation logic structural rules.

The most relevant structural rule is the Frame rule, which implements the
intuition we have presented as a rule in the Overview (§ 3.1). Consider a predicate
R which is stable under the environment interference of the resource U (RstableU),
and a PCM-map p such that R holds in a state whose self component is determined
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by p, and the other component takes self and other components from a state w,
i. e. R [p | wj | wo ◦ wj]. Then, if we can verify that Q holds in a small state w,
where p is part of the environment—verifyU e Q (w . p)—, we can verify Q ~ R
in a larger state w / p where we have zigged p together with w’s self component.

Notice that, unlike other separation logics where frames can materialize out
of thin air, the full-world assumption of FCSL state forces us to distinguish a
piece of the state where such framing occurs. Still, we can take p to be the full
self component of a state and thus recover the usual trick of pushing all previous
contributions to the frame, as we did after the first call to incr (line 4) in the
proof of twice in Figure 3.3.

3.3 Formal Structures

3.3.1 PCMs & Subjective State

The state w of a concurrent resource C in FCSL always consists of three distinct
auxiliary variables that we name as, ao and aj, such that w = [as | aj | as]. These
stand for the abstract self, other, and joint projections of the state. However, the
user can pick the types of these variables based on the application. It is essential
that as and ao have a common type, which moreover, exhibits the algebraic
structure of a partial commutative monoid (PCM)4:

Definition 3.5 (PCM). A partial commutative monoid is a tuple (U, •, ε) where
U is a carrier set and • is a partial, commutative, and associative binary operator
with ε ∈ U as a unit.

Definition 3.6 (Defined). Given a PCM (U, •, ε), we associate a predicate defined
which asserts whether the operation • is defined over a particular choice of elements.

O’Hearn et al. first identified the partial commutative structure of heaps in
separation logic. In SCSL (Ley-Wild & Nanevski, 2013), it was proposed to use
user defined PCM structures to abstract the space of ghost states, as a basis for
defining subjective state in a concurrent setting. We next list some characteristic
examples of PCMs which feature regularly in the design of the auxiliary state of
concurrent resources:

Example 3.7 (PCM examples). We list some examples of PCMs:

1. ({ p 7→ v | p ∈ N+}, ·∪, empty) i. e. Separation logic heaps, with disjoint heap
union ·∪ and the empty heap empty as a unit; such that

defined (p 7→ ·∪ q 7→ ) ⇐⇒ p 6= q

4Oddly enough, the acronym PCM is also used to abbreviate the slightly different algebraic
structure of a partially-commutative or trace monoid. In the latter structure, in contrast, the
binary operator is always defined, but not all products commute.
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2. (N, +, 0) i. e. the commutative monoid defined by natural numbers under
addition. Note that this PCM is in fact total. Any total commutative
monoid is trivially a PCM.

3. ({Own,���Own}, •,���Own) the PCM of mutex ownership, with:

defined (m1 • m2) ⇐⇒ 6= (m1 = m2 = Own)

4. ({ q | q ∈ Q∧ 0 ≤ q ≤ 1}, •, 0) i. e. the PCM of fractional permissions where
• is defined by addition such that:

defined (q1 • q2) ⇐⇒ q1 + q2 ≤ 1

5. Given a type A, the PCM of finite sets, ({t | t ∈ A}, ·∪, ∅), with disjoint
union ·∪ and the empty set ∅, such that

defined (A ·∪B) ⇐⇒ A ∩B = ∅

6. Given a type A, the PCM of finite maps, (N ⇀fin A, ·∪, ∅), with disjoint
union ·∪ and the empty map ∅, such that

defined (f ·∪ g) ⇐⇒ dom(f) ∩ dom(g) = ∅

The PCMs of mutexes, natural numbers and heaps constitute the different
components of the auxiliary state of the LCSL {lock,lk ,I} fine-grained resource in-
troduced in Section 3.1. The combination of the PCMs of heaps and fractional
permissions is the basis for the x

q7→ v assertions which allowed limited sharing
of heap variables as shared resources in the work by Bornat et al. (Bornat et al.
, 2005)5. Moreover, permissions are a regular feature of the design of several
program logics for shared variable concurrency reasoning inspired after CSL,
e. g. (Dinsdale-Young et al. , 2010; Svendsen & Birkedal, 2014; Dodds et al. , 2009;
Jacobs & Piessens, 2011), where permissions realize ownership of a concurrent
resource, or the ability to execute atomic changes in some notion of shared space.
The PCM of finite sets is used in of the implementation of concurrent coarse-
grained sets (Ley-Wild & Nanevski, 2013; Nanevski, 2016), as well in other FCSL
case studies (Nanevski et al. , 2014b; Sergey et al. , 2016). We use finite maps
to define history-based resources aimed at the specifications of fine-grained data
structures in Chapter 4. History-based fine-grained resources have been a regular
feature of recent verification efforts in FCSL (Sergey et al. , 2015b,a, 2016).

5The original formulation of fractional permissions in (Bornat et al. , 2005) actually varies
slightly from the one given in Example 3.7 above: the carrier set is defined to be {q | q ∈
Q ∧ O < q ≤ q}. This forbids 0 from being the unit and it also entails that the structure, as
is, it is not an actual PCM. This situation is however changed in subsequent works where 0
permissions actually make sense.
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A remark on the implementation of PCMs in Coq It should be noticed
that in order to make the implementation of FCSL cleaner, and also, in order
to make the verification experience smoother, we reckon it is better to deal with
partiality by making the binary operation • total. A more “dependently-typed”
approach could have been to encode defined by construction • operations e. g. the
one for fractional permissions as:

safeJoin : ∀ (p q:Q). p+ q ≤ 1→ Q
SafeJoin p q pf =̂ p+ q

This definition might look elegant a priori but, we think it is a paradigmatic case
of “trying too hard to be smart” with Coq, which would eventually had created
the need to carry around proof terms like pf in derived definitions. Instead, we use
the Maybe monad—or in more appropriate Coq terms, the option data type—to
lift of the carrier set U to U† =̂ U ∪ { undefined}. Not only this choice prevents
the excessive proliferation of proof arguments but also it has the advantage of
providing an immediate definition of defined as:

defined e =̂ e 6= undefined

PCM constructions Partial commutative monoids are closed under products.
This fact allow us to combine PCMs as the ones presented in Example 3.7 to define
the state space of complex resources. The product PCM is defined as follows:

Definition 3.8 (Product PCM). Given two PCMs (A, •, ε) and (B, ◦, ε) we define
the product PCM by point-wise lifting each operation to the product of the sets.
That is the product is a PCM (A×B, ?, (ε, ε)) where:

(a1, b1) ? (a2, b2) =̂ (a1 • a2, b1 ◦ b2)

is such that,

defined ((a1, b1) ? (a2, b2)) ⇐⇒ defined (a1 • a2) ∧ defined (b1 ◦ b2)

In order to define FCSL states, we need an auxiliary construction on PCMs,
PCM-maps. These are a particular class of finite maps with a non-disjoint union
which distributes over •.

Definition 3.9 (PCM-map and zip). A PCM-map is a finite map from labels
(isomorphic to nat) to ΣU :pcmU which associates each label with a pair of a PCM
U and a value v ∈ U . PCM-maps support a partial zipping operation which
•-joins the components of two PCM-maps:

∅ ◦ ∅ =̂ ∅
(l 7→U v1) ·∪m1) ◦ ((l 7→U v2) ·∪m2) =̂ (l 7→U v1 •U v2) ·∪ (m1 ◦m2)

7→ ◦ 7→ undefined otherwise

71



72 3.3. Formal Structures

Definition 3.10 (States). Given a type A, a FCSL state w of state-type stateA
is a triple [s | j | o], where s, o are PCM-maps, and j is an A-map.

Definition 3.11 (State Union). The disjoint union of FCSL states is defined by
lifting the disjoint union of the components component-wise:

s ·∪ w =̂

{
[ss ·∪ ws | sj ·∪ wj | so ·∪ wo] iff defined(si ·∪ wi) i ∈ {s, j, o}
undefined otherwise

Notation We abbreviate [l 7→ vs | l 7→ vj | l 7→ vo] with l 7→ [vs | vj | vo]. Notice
also that we overload the ·∪ symbol for disjoint unions of finite maps ·∪ to other
structures that “look like a finite map” e. g. states, heaps, PCM-maps, etc.

Definition 3.12 (State Flattening). State flattening bwc is the disjoint union of
the underlying heap footprint of a state w:

b∅c =̂ ∅
bl 7→U [s | j | o] ·∪mc =̂ flattsU s ·∪ flattsU s ·∪ flattsU o ·∪ bmc

where flattsU h =̂ if U = heap then h else ∅

Given the definition of flattening above, we can now define formally the
assertion w ↓ h from the Hide rule in Figure 3.5 as follows:

Definition 3.13 (Erasure). Given a state w and a heap k we define w ↓ k as:

w ↓ k ⇐⇒ bwc = k

Definition 3.14 (Valid States). A state w is valid if and only if the following
properties hold:

• ws, wj, wo have the same label domains i. e.: dom(ws) = dom(wj) = dom(wo).

• Zipping ws and wo is defined i. e. defined (ws ◦ wo).

• The underlying heap flattening of w is defined, i. e. defined (bwc). This
entails that the heap components in ws, wo and wj are disjoint.

Definition 3.15 (State transposition). Given a state w = [as | aj | ao], the
transposition of w is the state w> = [ao | aj | as].

Definition 3.16 (State framing). Let w be a state of type stateT and p a PCM-
map. Then self-framing of w with p is the state w . p = (as • p, aj, ao). Dually,
other-framing of s with w is s / p = (as, aj, p • ao).
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3.3.2 Transitions

We formalize now the concept of an FCSL transitions. As we have hinted informally
before in Section 3.1, fine-grained resources in FCSL can be characterized as state
transition systems over subjective states, whose transitions denote possible atomic
manipulations of the—both real and auxiliary—state.

Definition 3.17 (Transitions). A transition g of a resource U is a relation on
states such that the following properties hold:

Guarantee : (w,w′) ∈ g =⇒ wo = w′o
Locality : ∀t:PCMmap. wo = w′o =⇒

(w . t, w′ . t) ∈ g =⇒ (w / t, w′ / t) ∈ g

Additionally, we will only consider transitions that relates states which belong to
the state space CohU (see Definition 3.22), i. e.

(w1, w2) ∈ g =⇒ w1 ∈ CohU ∧ w2 ∈ CohU

The Guarantee property restricts g to only modify the self and joint compo-
nents. Therefore, g describes the behaviour of a viewing thread in the subjective
setting, but not of the thread’s environment. In the terminology of Rely-Guarantee
logics (Jones, 1983; Feng et al. , 2007; Feng, 2009; Vafeiadis & Parkinson, 2007), g
is a guarantee relation. The Locality property ensures that if g relates states with
a certain self components, then g also relates states in which the self components
have been simultaneously framed by a PCM-map t, i. e., enlarged according to t.
This definition generalizes the notion of locality from separation logic (Reynolds,
2002). However, unlike the case of separation logic frames which can materialize
out of nowhere, FCSL is designed on a “closed world” model and thus t has to be
appropriated from the other component; that is, taken out—or transferred—from
the ownership of the environment.

Moreover, even if FCSL transitions are perceived as Guarantee relations, they
encode in fact, both Guarantee and Rely relations. This is because the behaviour
of the environment is not free but rather a dual construction on the possible
self-moves of the STS. Then, in order to describe the behaviour of the thread’s
environment, i.e. obtain a rely relation, we merely transpose the self and other
components of g as follows:

Definition 3.18 (Transition Transposition). We lift the definition of state trans-
position from Definition 3.15above to act point-wise over transitions:

g> = {(w>1 , w>2 ) | (w1, w2) ∈ g}

Furthermore, FCSL transitions can be classified in internal and external
transitions. Moreover, external transitions comes in pairs of symmetric acquire
and release transitions.
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Definition 3.19 (Internal Transitions). An internal transition IntU is a transition
which is reflexive and preserves heap footprints, i. e.

Reflexivity : ∀w. (w,w) ∈ IntU

Footprint Preservation : ∀w1w2. (w1, w2) ∈ IntU =⇒
dom(bw1c) = dom(bw2c)

Internal transitions are reflexive so that programs specified by such transitions
may be idle or stuttering—i. e., they transition from a state to itself—. The
Footprint Preservation requires internal transitions to preserve the domains
of heaps obtained by state flattening. Internal transitions may exchange the
ownership of sub-heaps between the self and joint components, or change the
contents of individual heap pointers, or change the values of auxiliary state, which
flattening erases. However, they cannot add new pointers to a state or remove old
ones, which is the task of external transitions.

An external transition, then, is a function, mapping a heap h into a relation
on CohV . As we mentioned above, they manifest in pairs, consisting of an acquire
and a release transition.

Definition 3.20 (Acquire/Release Pair). An acquire transition acqU , and a release
transition rlsU are functions mapping heaps to transitions which extend and reduce
heap footprints, respectively, as formalized below.

Footprint Extension : ∀h:heap. (w,w′) ∈ (α h) =⇒
dom (bwc ·∪ h) = dom bw′c

Footprint Reduction : ∀h:heap. (w,w′) ∈ (ρ h) =⇒
dom (bw′c ·∪ h) = dom bwc

These allow for the composition of different resources by entangling them (Sec-
tion 3.3.5), i. e. interconnecting some (or all of) their dually polarized external
transition pairs of two FCSL resources, to obtain a larger one.

Example 3.21 (idU). The identity or diagonal transition over CohU , is the least
(reflexive) internal transition over CohU :

(a, b) ∈ idU ⇐⇒ a = b ∧ a ∈ CohU

3.3.3 Fine-Grained Resources

Definition 3.22 (Fine-grained Resource). A FCSL Fine-grained resource or
concurroid6V is a 4-tuple V = (LabsV ,CohV , IntV ,ExtV) where: (1) L is a set of
labels (again, isomorphic to N); (2) CohV is a set of states which denotes the
Invariant or State space of the resource; (3) IntV is the set of internal transitions
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of the resource; (4) ExtV is a set of pairs (acqV , rel), where acqV and rel are external
transitions of V . Moreover, the states in CohV satisfy the following properties:

State Validity : ∀w ∈ CohV . validw

Label Set : LabsV = dom(ws) = dom(wj) = dom(wo)

Fork-join Closure : ∀t:PCM−map. w / t ∈ CohV ⇐⇒ w . t ∈ CohV

The property State Validity asserts that every state w ∈ CohV is valid
as per Definition 3.14. Label Set commands that the labels of the resource
matches matches with that of the states in the invariant space state CohV . As a
consequence, states w′ which have extra labels are not part of the invariant space,
even if they have those labels required to satisfy the assertions of the fine-grained
resource Invariant. Finally, the Fork-join Closure property requires that CohV
is closed under the realignment of self and other components, when they exchange
a PCM-map t between them. Such realignment is part of the definition of ~, and
thus appears in proofs whenever the rule Par is used, i. e. whenever threads fork
or join. Fork-join closure ensures that if a parent thread forks in a state from
CohV , then the child threads are supplied with states which also are in CohV , and
dually for joining.

As an example, we give now the complete definitions for the fine-grained
resources of private state, P and a single-cell spin lock, L{lock,lk ,I}, which were
presented in Section 3.1, as components of LCSL {lock,lk ,I}.

Example 3.23 (P). The fine-grained resource for private heaps is given by the
tuple P = ({priv},CohP , IntP , {(acqP , rlsP)}), with:

CohU =̂ { priv 7→ [hs | ∅ | ho] | dom(hs) ∩ dom(ho) = ∅}
(w,w′) ∈ IntP ⇐⇒ ws = priv 7→ hs ∧ w′s = priv 7→ h′s∧

dom(hs) = dom(h′s) ∧ wo = w′o
(w,w′) ∈ acqP h ⇐⇒ ws = priv 7→ hs ∧ w′s = priv 7→ hs ·∪ h ∧ wo = w′o
(w,w′) ∈ rlsP h ⇐⇒ ws = priv 7→ hs ·∪ h ∧ w′s = priv 7→ hs ∧ wo = w′o

The internal transition IntP admits arbitrary footprint-preserving changes to
the private heap hs, e. g. reading from and writing to the threads owned private
heap. The acquire and release transitions acqP and rlsP simply add and remove
the the heap h from hs. Notice that how the acquire and release transitions of
P realize ownership transfer of the real—non-auxiliary—memory uniformly, in
the same way as with any other auxiliary state. Notice that the explicit wo = w′o
statement implies the Guarantee property of transitions. This entails that the
heap h being interchanged with acquire-release pairs cannot materialize from the

6In the original FCSL paper (Nanevski et al. , 2014a), we introduced the name concurroid
as a short name for fine-grained concurrent resources but it has since fallen out of favour—at
least in FCSL papers: we do still use the term colloquially sometimes, as it is shorter.
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environment’s contribution, but rather has to be provided by a dual transition
(from a different resource). We will discuss this feature in more detail when when
we present entanglement in Section 3.3.5.

Example 3.24 (L{lock,lk ,I}). The L{lock,lk ,I} concurrent resource models a spin
lock implemented on a single pointer cell lk , which protects the heap h enforcing
the resource invariant I (O’Hearn, 2007). Given, the following definition for the
invariant space CohL{lock,lk,I}

CohL =̂ {w | w |= SpinI}
SpinI =̂ lock

s7→ (ms, as) ∧ lock
o7→ (mo, ao) ∧ lock

j7→ ((lk 7→ b) ·∪ h)∧
if b then h = ∅ ∧ms • mo = Own

else I (as • ao) h ∧ms • mo = ���Own

we define the resource L{lock,lk ,I} = ({lock},CohL, IntL, {(acqL, rlsL)}), with the
following transitions:

(w,w′) ∈ IntL ⇐⇒ w = w′

(w,w′) ∈ acqL h ⇐⇒ ws = lock 7→ (Own, as) ∧ wj = lock 7→ (lk 7→ true)∧
w′s = lock 7→ (���Own, a′s)∧
w′j = lock 7→ ((lk 7→ false) ·∪ h)∧
w′o = wo

(w,w′) ∈ rlsL h ⇐⇒ ws = lock 7→ (���Own, as)∧
wj = lock 7→ ((lk 7→ false) ·∪ h)∧
w′s = lock 7→ (Own, as) ∧ w′j = lock 7→ (lk 7→ true)

w′o = wo

The internal transition IntL does not admit changes to the state w, and only
allows for stuttering transitions. The acqL transition corresponds to unlocking, and
hence to the (re-)acquisition of the heap h. It changes the ownership ghost from
Own to ���Own and the contents of the lk pointer (the ownership bit) from true to
false, and adds the heap h to the resource state. The rlsL transition corresponds to
locking, and is dual to acqL. When locking, the rlsL transition keeps the auxiliary
view as unchanged. Thus, the resource remembers the auxiliary view at the point
of the last call to lock. Upon unlocking, the acqL transition changes this view into
a′s, where a′s is some value that is coherent with the acquired heap h, i. e., which
makes the resource invariant I(as • ao) h hold, and thus, the state satisfies the
state invariant CohL.

We conclude this section with the formalization of the concepts of Rely and
Guarantee of a fine-grained resource. This will be useful later on to define the
denotational meaning of FCSL triples.
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Definition 3.25 (Guarantee). Given a resource U = (LabsU ,CohU , IntU ,ExtU),
the guarantee or self-stepping relation GU of U unions its internal and all external
transitions of U , and then takes a transitive closure:

GU =̂

IntU ∪
⋃

h,(a,r)∈ExtU

(a h) ∪ (r h)

∗

Definition 3.26 (Rely). Given a resource U = (LabsU ,CohU , IntU ,ExtU), the rely,
other - or environment-stepping relation RU of U is defined as the transitive closure
of the union of the transposed (cf. Definition 3.18) internal transition with the
iterated union of all transposed external transitions from ExtU :

RU =

Int>U ∪
⋃

h,(a,r)∈ExtU

(a h)> ∪ (r h)>

∗

With the later definition, we can now revisit the notion of stability, giving a
complete and formal—and obvious!—definition based on the Rely of the resource:

Definition 3.27 (Stability). An FCSL assertion P is stable under the environment
interference of the fine-grained resource U if and only if for all w,w′ such that
(w,w′) ∈ RU , w |= P =⇒ w′ |= P . We denote stable assertions P for a resource
U as P stable PU .

3.3.4 Actions of a concurrent resource

Definition 3.28 ( Actions). Given a fine-grained resource U and a type A, we
define actions by a 4-tuple a = (U , A,Prea,Rela) where:

1. U is the fine-grained resource whose internal transitions a respects.

2. A is the type of the action’s return value.

3. Prea is a predicate on states describing the subset of states of CohU in which
the action could be executed, i. e. the safety predicate of the action.

4. Rela : state × state × A → Prop is the stepping relation, which relates the
initial state, the ending state, and the ending result of the action.

It should be noticed that the type A is expected to be pure—i. e. not a FCSL
triple7. Moreover, Prea and Rela are given in a large-footprint style, giving the full
heaps and the auxiliary states they accept. The stepping relation Rela implements
the effect of the atomic action.

7This is because of the fact that FCSL has first-order states, as it was the case with HTTcc in
Chapter 2. We dwell further into this matter in Section 3.6 and in the Conclusions (Chapter 5).
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Proposition 3.29 (Proper actions). Given a resource U = (LabsU ,CohU , IntU ,ExtU),
an action a = (U ,Prea, σ,Rela) A is required to satisfy the following properties:

Coherence : w ∈ Prea =⇒ w ∈ W
Safety Monotonicity : w . t ∈ Prea =⇒ w / t ∈ Prea

Step Safety : (w,w′, r) ∈ Rela =⇒ w ∈ Prea

Internal Stepping : (w,w′, r) ∈ Rela =⇒ (w,w′) ∈ IntU

Framing : w . t ∈ Prea =⇒ (w / t, w′, r) ∈ Rela =⇒
∃w′′. w′ = w′′ / t ∧ (w . t, w′′ . t, v) ∈ Rela

Erasure : defined(bwc ·∪ h) =⇒ bwc ·∪ h = bw′c ·∪ h′ =⇒
(w,w1, r) ∈ Rela =⇒ (w′, w′1, r

′) ∈ Rela =⇒
r = r′ ∧ bw1c ·∪ h = bw′1c ·∪ h′

Totality : ∀w.w ∈ Prea =⇒ ∃w′ v. (w,w′, v) ∈ Rela

The Coherence, Step Safety and Internal Stepping properties are straight-
forward. The Safety-Monotonicity property states that if the action is safe in
a state with a smaller self component (because the other component is enlarged
by t), the action is also safe if we increase the self component by t.

The Framing property says that if a steps in a state with a large self component
w / t, but is already safe to step in a state with a smaller self component w . t,
then the result state and value obtained by stepping in w / t can be obtained by
stepping in w . t, and moving t afterwards.

The Erasure property shows that the behaviour of the action on the concrete
input state obtained after erasing the auxiliary fields and the logical partition,
doesn’t depend on the erased auxiliary fields and the logical partition. In other
words, if the input state have compatible erasures (that is, erasures which are
sub-heaps of a common heap), then executing the action in the two states results
in equal values, and final states that also have compatible erasures. This is a
standard property proved in concurrency logics that deal with auxiliary state and
code (Owicki & Gries, 1976; Brookes, 2007).

The Totality property shows that an action whose safety predicate is satisfied
always produces a result state and value. It doesn’t loop forever, and more
importantly, it doesn’t crash. We will use this property of actions in the semantics
of programs to establish that if the program’s precondition is satisfied, then all of
the approximations in the program’s denotation are either done stepping, or can
actually make a step (i.e., they make progress).

So far, the actions are defined in a so-called large footprint style, e. g., the
definition of the action release in Example 3.4 mentions existentially-quantified
heap h explicitly. In order to enable writing various actions in a small footprint
style, we also enforce the following Locality property:

Locality : wo = w′o =⇒ (w . t, w′ . t, v) ∈ Rela =⇒ (w / t, w′ / t, v) ∈ Rela
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Atomic Actions The FCSL actions presented above act on the whole, decorated,
FCSL state. In order to prove that this actions correspond to atomic operations
on real state, we need to introduce the notion of atomic actions.

Definition 3.30 (Atomic Action). We say that an FCSL action is an atomic
action, and denote it by the triple a = (A,Prea,Rela), if it is a special kind of
action defined only over heaps, rather than over decorated states.

That is, unlike FCSL states which are decorated with additional information
such as auxiliary state and partitioning between self, joint and other. As it was
before, A denotes the return type, Prea is the safety predicate and Rela is the
stepping relation, all ranging over heaps. Atomic actions can then, be lifted to
any fine-grained resource U with a non-empty heap foot-print, i. e. a resource
whose state flattening (cf. Definition 3.12) results in a non-empty heap. The
basic building block of FCSL atomic operations is given by a generic family of
Read-Modify-Write (or RMW) operations, which act on a single heap cell (Herlihy
& Shavit, 2008, §5.6).

Definition 3.31 (RMW). We define the family of RMWA,B (x, f, g) atomic Read-
Modify-Write operations through the following (indexed) atomic actions:

RMWA,B (x, f, g) =̂ (B, (x 7→A −) ·∪ h, (x 7→ v) ·∪ h (x 7→ f v) ·∪ h ∧ r = g v)

These atomic actions atomically replace the current value v of pointer x with
f v for some pure function f , and return the result according to the function g. A
denotes the type of the pre-value of the register x, r denotes the returned value
and h here is a logical variable denoting the rest of the heap. Using the RMW
action, we define the basic, primitive, atomic actions for FCSL:

Definition 3.32 (Primitive atomic actions). We define the basic Read, and Write
atomic actions by instantiating RMW as follows:

ReadA x =̂ RMWA,A (x, λ v. v, λ v. v)

Write (x,w) =̂ RMWA,( ) (x, λ . w, λ . ( ))

Moreover, we define the idle atomic action Skip as:

Skip =̂ (unit, h, h h)

Notice that we define Skip in this way in order to allow actions with an empty
heap footprint, i. e. actions which implement pure auxiliary or ghost code, and
are introduced for verification purposes8. We can use RMW to implement several
other classical concurrency primitives:

8Otherwise, had we intended to use RMW to define Skip, and therefore making RMW the

unique building block of atomic actions, we could have defined it as RMW( ),( ) (p, λ v. v, λ . ( )).
However, we would have needed to assert the existence of a non-null dedicated pointer p just to
comply with RMW ’s signature—Yikes!—. Of course, we rather not.
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Example 3.33 (Atomic Instructions). We instantiate RMW in order to provide
FCSL implementations of the following atomic instructions:

CAS (x, a, b) =̂ RMWA,B (x, λ v. if v = a then b else v, λ v. v)

Compare&Set (x, a, b) =̂ RMWA,B (x, λ v. if v = a then b, else v, λ v. v = a)

Get&Set (x,w) =̂ RMWA,A (x, λ . w, λ v. v)

Test&Set x =̂ RMWB,B (x, λ . True, λ v. v)

F&I x =̂ RMWInt,Int (x, λ v. v + 1, λ v. v)

F&A (x, a) =̂ RMWInt,Int (x, λ v. v + a, λ v. v)

Compare-and-Swap (CAS) atomically reads the pointer x and if the value
matches a swaps it to b. In any case, it returns the original value of the pointer
x. The variants which returns True if succeeded and False otherwise is usually
called Compare-and-Set. Get-and-Set, a. k. a. as atomic swap fetches the old
value and replaces it with a new one. In the case that the new value is True
(or 1), it is usually referred as Test and Set (TAS). Fetch-and-Increment (F&I)
atomically increments the counter x, while returning the pre-value. Fetch-and-Add
generalizes the latter to perform atomic incrementation by an integer value a
passed as a parameter.

It should be noticed that, since FCSL’s model of heaps is size-agnostic, all of
our implementations are indeed abstract and do not implement real-world atomic
instructions over registers whose size is limited to 64 bits. This could be done,
for example, by building a specialized resource P64 whose invariant space CohP64
enforces such restrictions on the contents of the heaps.

We connect some of the atomics in Example 3.33 to the corresponding fine-
grained resources developed for different FCSL case studies. Test&Set is used to
implement the CSL-style resource LCSL {lock,lk ,I}’s lock atomic action. We use CAS
in the Coq implementation of the concurrent resource J that will be presented
in Chapter 4 to implement a snapshot algorithm’s “single-writer/single-scanner”
thread-exclusion requirement. Finally, F&I is used in (Nanevski et al. , 2014b) to
implement a Ticketed Lock.

Erasure and Operational actions An important property of FCSL actions
is the fact that they erase to heap-only atomic actions, acting on a unique pointer.
We devote the rest of this sub-section to formalize this claim.

Definition 3.34 (Action erasures). Given an action a, the erasures bPreac and
bRelac of a’s safety predicate and stepping relation are relations on heaps defined
as follows:

bwc ∈ bPreac ⇐⇒ w ∈ Prea

(bwc, bw′c, r) ∈ bRelac ⇐⇒ (w,w′, r) ∈ Rela
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Definition 3.35 (Operational action). We call an action a operational if its
erasure corresponds to one of the atomic actions, i. e., if there exists an atomic
command b ∈

{
Skip,RMWA,B (x, f, g)

}
such that

bPreac ⊆ Preb ∧ ∀h ∈ bPreac h′ r. (h, h′, r) ∈ bRelac =⇒ (h, h′, r) ∈ Relb

In the examples throughout this thesis—and elsewhere—we have only consid-
ered operational actions, though the inference rules and the implementation of
FCSL in Coq does not currently enforce this requirement, and therefore the fact
that they are, indeed, operational actions has been proved by hand. Moreover,
when we define an action, or as in the rule ACTION (Figure 3.5) which states
that a is an action for the resource U , we will always assume that the action is
proven to be operational by the definition above and, moreover, it is a proper
action satisfying the properties described in Proposition 3.29.

3.3.5 Entanglement, Injection and Hiding

Entanglement We give now the formal definitions involved in the cosntruction
of entangled fine-grained resources.

The state space predicate CohUoV combines the individual states of U and V
by taking the union of their label sets, while ensuring that the labels contain only
non-overlapping heaps.

Definition 3.36 (CohUoV). We define the state space for the entangled resource
U o V as follows:

CohUoV =̂ {wU ·∪ wV | wU ∈ CohU ∧ wV ∈ CohV ∧ dom(bUc) ∩ dom(bVc) = ∅}

Thus, the space state CohUoV identifies the point-wise component of each state
and, provided that the heap footprint is disjoint, asserts that each component
contributed from the “smaller” resources U and V, satisfy their respective state
invariants. In order to define the transition components of U o V , we first need
the auxiliary concept of transition interconnection.

Definition 3.37 (Transition Interconnnection). Given two resources U and V,
and transitions fU and gV over CohU and, respectively, CohV , the interconnection
fU ./ gV is a transition on CohUoV which behaves as fU (resp. gV) on the part of
the states labelled by U , and respectively V :

fU ./ gV =̂

{
(w1 ·∪ w2, w

′
1 ·∪ w′2)

∣∣∣∣∣ (w1, w
′
1) ∈ fU ∧ (w2, w

′
2) ∈ gV ∧

w1 ·∪ w2 ∈ CohUoVw
′
1 ·∪ w′2 ∈ CohUoV

}

Definition 3.38 (Entanglement-o). Given two fine-grained resources U and V.
The entanglement U o V is another fine-grained resource defined as follows:
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• The label set of the entangled resource is derived by the point-wise disjoint
union of each label set, i. e. LUoV = LU ∪ LV .

• The state invariant CohUoV (Definition 3.36).

• The internal transition of U o V is defined as follows:

IntUoV =̂ (IntU ./ idV ) ∪ (idU ./ IntV ) ∪⋃
h, (aU , rU ), (aV , rV ) (aU h ./ rV h) ∪ (aV h ./ rU h)

where (aU , rU ) ∈ ExtU , (aV , rV ) ∈ ExtV , and idU is the diagonal of CohU (Def-
inition 3.21)

• The external transitions of U o V, ExtUoV , are those of U , framed with
regard to the labels of V :

ExtUoV = {(λh. (acqU h) ./ idV , λh. (rlsU h) ./ idV ) | (acqU , rlsU) ∈ ExtU}

Then the internal transition IntUoV prescribes that the entangled resource
steps internally whenever U steps and V stays idle, or when V steps and U stays
idle, or when there exists a heap h which U and V exchange ownership over by
synchronizing their external transitions. We note that ExtUoV makes an arbitrary
choise to frame on the transitions of U rather than those of V. Hence, this
definition interconnects the external transitions of U and V , but it keeps those of
U “open” in the entanglement, while it “shuts down” those of V. The notation
U oV is meant to symbolize this asymmetry. The asymmetry is important for our
example of encoding CSL resources, as it enables us to iterate the (non-associative)
addition of new resources as ((P o Llock1,lk1,I1)Llock2,lk2,I2) o · · · while keeping
the external transitions of P open in order to possibly exchange heaps with new
resources.

Clearly, this choice entails that there are several ways to interconnect transitions
of two resources and select which transitions to keep open. In our implementa-
tion (FCSL, 2017), we have identified several operators implementing common
interconnection choices, and proved a number of equations and properties about
them (e. g., all of them validate an instance of the Inject rule).

Injection We define the predicate injects V U , which intuitively means that
the “larger” fine-grained resource U can be considered as an entanglement of the
“smaller” fine-grained resource V with some additional fine-grained resource W .
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Definition 3.39 (Injection Predicate). We say that V injects into U , injects V U ,
if and only if there exists W , such that the following three statements hold:

(1) w ∈ CohU ⇐⇒ w = w1 ·∪ w2 ∧ w1 ∈ CohV ∧ w2 ∈ CohW

(2) ∀w1 w2 w. w1 ·∪ w ∈ CohU ∧ w2 ·∪ w ∈ CohU ∧ (w1, w2) ∈ IntV =⇒
(w1 ·∪ w,w2 ·∪ w) ∈ IntU

(3) ∀w1 w
′
1 w2 w

′
2. s1 ∈ CohV ∧ s2 ∈ CohV ∧ (s1 ·∪ s′1, s2 ·∪ s′2) ∈ GU =⇒

(s1, s2) ∈ GV ∧ (s′1, s
′
2) ∈ GW

where GV ,GW are, respectively, the guarantee relations the fine-grained resources
V , and, respectively, W (Definition 3.25).

The first requirement ensures that the states of U can be constructed as
Cartesian products of states of V and W. The second requirement ensures
that internal transitions of the smaller fine-grained resource V do not break the
coherence of it enclosing fine-grained resource U . The third requirement ensures
that the transitions within U can be always uniquely split to the transitions done
by V and by the “addition” of W . Notably, the first requirement ensures that if
injects V U holds, there always exists a “smaller” state wV , such that wV ∈ CohV
for any wU ∈ CohU .

We will also introduce another auxiliary definition in order to have a handle
to the existential fine-grained resource W in Definition 3.39.

Definition 3.40. We will write U = V IJW , when injects V U and W is an
additional fine-grained resource from Definition 3.39.

The notation IJ hints that the entanglement operators o, n, etc.can be seen
as particular cases of IJ. We close this paragraph with some usufeul properites of
the entanglement operator, which we have proven in our Coq files.

Lemma 3.41 (World Expansion). injects V (V oW ) for every V and W with
disjoint label sets.

Lemma 3.42 (Exchange law for o). (U o V) oW = (U oW) o V

Example 3.43 (Empty Resource). We define of the empty resource E as

E = (∅,CohE , id, ∅)

where, w ∈ CohE ⇐⇒ w = ∅, i. e. w is the empty state without any labels.

Lemma 3.44 (o–Right Unit). The empty resource E is the right unit of the o
operator.
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Refinement We next define the refinement relation on fine-grained resources.
The fine-grained resource U is refined into V , if we can, intuitively, elaborate the
states of U into those of V. In other words, if V’s states can be seen to contain
the states of U , plus some other additional state. Abstractly, we capture the
dependence by positing an elaboration predicate Φ̂ between the state spaces of U
and V, with a number of properties shown below. Additionally, Φ̂ takes a value
g : G of user-specified type, which is an abstraction of the mentioned additional
state (which we call a seed). Thus, we read Φ̂(g)(w,w′) to say that g elaborates

w into w′ (via Φ̂).

Definition 3.45 (Elaboration predicate). Given a type G of abstract states and

a function Φ̂ : G → (stateU , stateV) → Prop, refines U V Φ̂ if and only if the
following statements hold:

1. Φ̂(g)(w,w1) ∧ Φ̂(g)(w,w2) =⇒ w1 = w2

2. Φ̂(g1)(w1, w) ∧ Φ̂(g2)(w2, w) =⇒ g1 = g2 ∧ w1 = w2

3. Φ̂(g)(w,w′) =⇒ w ∈ CohU ∧ w′ ∈ CohV

4. Φ̂(g)(w1, w
′
1) ∧ (w1, w2) ∈ RU =⇒ ∃w′2, Φ̂(g)(w2, w

′
2) ∧ (w′1, w

′
2) ∈ RV

5. Φ̂(g1)(w1, w
′
1)∧ (w′1, w

′
2) ∈ IntV =⇒ ∃g2 w2. Φ̂(g2)(w2, w

′
2)∧ (w1, w2) ∈ IntU

6. Φ̂(g1)(w1, w
′
1) ∧ Φ̂(g2)(w2, w

′
2) =⇒ (w1 o = w1 o ⇐⇒ w′1 o = w′2 o)

7. ∀p.∃q.

∀g w w′. Φ̂(g)(w . p, w′) =⇒
(
∃w′1, w′ = w′1 . q ∧ Φ̂(g)(w / p, w′1 / q)

)
∧∀g w w′. Φ̂(g)(w,w′ / q) =⇒

(
∃w1, w = w1 / p ∧ Φ̂(g)(w1 . p, w

′ . q)
)

8. Φ̂(g)(w,w′) =⇒ bwc = bw′c

If the properties in Definition 3.45 are satisfied, we call Φ̂ and elaboration
predicate for U and V . In Definition 3.45, (1) states that Φ̂ uniquely determines
refined states (however, some states in U need not refine into anything in V , i. e.,

Φ̂ is a partial function); (2) states that the Φ̂ is injective: abstracting back from

a refinement is unique. Thus, (1) and (2) state that Φ̂ is a partial bijection. (3)
ensures that the elaboration maps well-formed states to well-formed states; (4)
specifies that environment steps in the “coarse” world do not change introduced
abstractions in the “fine” world, as environment steps in the coarse world can’t see
the refinement; (5) states that “abstracting back” preserves internal transitions.
The properties (4) and (5) can be undesrtood also as simulation properties9. In
(4), a rely transitions of U can always be matched by a rely transition of V. In
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(5), an internal transition of V may always be matched by an internal transition
of U . (6) postulates that refinement realigns self and joint parts, but it does not
modify the contents of other by adding or removing (i. e. zigging or zagging) to
its component; (7) is a version of framing, namely, every every extension to other
of a coarse state is is uniquely refined into an addition to fine state; finally, (8)
ensures that refinement only deals with abstract parts of the state and does not
change the heap.

Hiding The abstraction function Φ is a user-specified annotation on the hide
command. It maps values g : G (where G is also user specified) to assertions, that
is, predicates over states (equivalently, sets of states) of a concurroid V . For the
soundness of the hiding rule, Φ is required to satisfy the following properties.

Proposition 3.46 (Φ functions for Hide). The Φ function in the Hide rule
satisfies the following properties, where s, w denote states of W and f, g : G, where
G is a user specified type.

Coherence : w ∈ Φ(g) =⇒ w ∈ CohW

Injectivity : w ∈ Φ(f) =⇒ w ∈ Φ(g) =⇒ f = g

Surjectivity : s ∈ Φ(f) =⇒ w ∈ CohW =⇒ so = wo =⇒ ∃g. w2 ∈ Φ(g)

Guarantee : s ∈ Φ(f) =⇒ w ∈ Φ(g) =⇒ so = wo

Precision : s ∈ Φ(g) =⇒ w ∈ Φ(g) =⇒ bsc ·∪ h = bwc ·∪ h′ =⇒ s = w

The Coherence and Injectivity assertions are immediate from their defini-
tions. The property Surjectivity states that for every state w of the concurroid
W one can find an image g, under the condition that the other component of
w is well-formed according to Φ (In most cases, this typically ammounts to the
fact that other component is equal to the unit of the PCM-map monoid for W).
Guarantee formalizes that environment of hide can’t interference on V , as V is
installed locally. Thus, whatever the environment does, it can not influence the
other component of the states w described by Φ. Finally, Precision is a techni-
cal property common to separation-style logics, though here it has a somewhat
different flavor. Thus, precision ensures that for every value g, Φ(g) precisely
describes the underlying heaps of its circumscribed states; that is, each state Φ(g)
is uniquely determined by its heap erasure.

Lemma 3.47 (Hiding and refinement). Given two resources U and V, and let Φ
be an abstraction function from a Hide command, i. e. Φ satisfies the properties

9Informally, at least. The point is that they reek of commutativity or naturality and they
beckon us to engage in a deeper study into the mathematics of FCSL’s concurrent resources.
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about the resource V from Proposition 3.46. Let Φ̂ be constructed as follows.

Φ̂(g)(w,w′) ⇐⇒ ∃ h w1 w2, w = (priv 7→ (h ·∪ bw1c)) ·∪ w2

∧ w′ = (priv 7→ h) ·∪ w1 ·∪ w2

∧ w1 ∈ Φ(g)

∧ w ∈ Coh(PoU) ∧ w′ ∈ Coh(PoUoV)

Then Φ̂ is a valid elaboration predicate, that is refines (P o U) (P o U o V) Φ̂.

Finally we pack this Lemma with the properties required for Φ as a property,
which will constitute the proof obligation required in order to assert a valid
resource introduction with the HIDE rule:

Definition 3.48 (hides predicate). We say that an abstraction function Φ, which
satisifies the properties from Proposition3.46, hides V from U , i. e. hides U V Φ,
if and only if Phi defines a valid elaboration predicate following Lemma 3.47. In
short,

hides U V Φ =̂ refines (P o U) (P o U o V) Φ̂

3.4 Semantics of FCSL

Akin to the development of HTTcc presented in Chapter 2, we implement FCSL as
a shallow embedding in Coq (Bertot & Castéran, 2004; The Coq Development Team,
2016). This has several important benefits, as it allows us to program and prove
directly with the semantic objects, thus immediately lifting FCSL to a full-blown
programming language and verification framework with higher-order functions,
abstract types, abstract predicates, and a module system. We also gain a powerful
dependently-typed λ-calculus, which we use to formalize all the semantic definitions
and the meta-theory, including the assertion language and we gain support for
higher-order procedures, inductive types, modules, and other features of the Coq
type-system for free. Last but not least, we can directly re-use Coq and Ssreflect
libraries—e. g. facts about lists, different number theories, permutations, finite-
functions etc.— in the verification of FCSL client programs without having to
re-implement or re-prove them.

The structure of this section follows the bottom up process of the shallow
embedding of FCSL in Coq. First, we define action trees and their semantics10with
regard to instrumented FCSL states. We will use action trees to define the type
of program models ProgU A. Then, we will relate such program models to the
high-level transitions of a concurrent resource by an always state-transformer
predicate that ensures a tree is resilient to any amount of interference.

As a first step into defining the semantic of Hoare triples {P}A {Q}@ U ,
we translate those types to Hoare-types STU s akin to those in Chapter 2. The
denotational semantics of FCSL Hoare-types will be given by a complete lattice
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of action trees that are always-safe to run from any initial configuration that
satisfies precondition p and if they terminate produce a final configuration that
satisfies postcondition q (under possible interference from programs respecting
the transitions of U). The complete lattice structure makes the semantic domain
suitable for modelling recursion.

Finally, we establish the soundness of FCSL by showing that the denotations
of FCSL commands satisfy an appropriate instance of the always predicate (i. e.,
adhere to the progress-and-preservation property).

3.4.1 Action trees and their operational semantics

Action Trees The semantic model for FCSL programs largely relies on action
trees (Ley-Wild & Nanevski, 2013), which implement finite, partial approximations
of the behaviour of FCSL commands. Action trees generalize Brookes’ action
traces (Brookes, 2007). Action trees have richer structure than action traces:
while the latter are sequences of actions and their results, action trees contains an
action and a continuation which itself is a tree parametrized with regard to the
output of the action. Concretely, action trees are implemented by the following
inductive data-type definition.

Definition 3.49 (Action trees). The type tree U A of A-returning action trees is
defined by an inductive definition, as follows:

tree U A =̂

| Unfinished

| Ret (v : A)

| Act (a : action U A)

| Seq (t : tree U B) (k : B → tree U A

| Par (t1 : tree U B1) (t2 : tree U B2)(̧k : B1 ×B2 → tree U A)

| Inject (t : tree V A)

| HideΦ,g (t : tree V A)

We briefly explain the constructors in Definition 3.49. The Unfinished tree
indicates an incomplete approximation to divergent computation. Ret v is a
terminal computation that returns value v :A. The constructor Act takes as a
parameter an A-returning action a = (U , A,Prea,Rela), defined for the resource
U . Seq t k sequentially composes a B-returning tree t with a continuation k that
takes t’s return value and generates the rest of the approximation. Par t1 t2 k

10FCSL being a shallow embedding, this is not an operational semantics per se, as the latter
is given by the host language. It would be perhaps more appropriate then to speak of an
operational semantics on the model, as it will be made more clear by the denotation of FCSL
triples in Definition ??.
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is the parallel composition of trees t1 and t2, and a continuation k that takes
the pair of their results when they join. The underlying type theory of Coq’s
support for iterated inductive definition permits the recursive occurrences of tree
to be nonuniform (e. g., tree Bi in Par) and nested (e. g., the positive occurrence
of tree A in the continuation). Moreover, since the function space → includes
case-analysis, the continuation may branch upon the argument, and thus capture
the pure computation of conditionals. This closely corresponds to the operational
intuition and leads to a straightforward denotational semantics: there is no need
to implement conditionals and we get, for instance, case analysis on pure inductive
types for free.

The Inject constructor embeds a tree t : tree V A (of a different, i. e., smaller,
resource V) for the underlying computation and generates a tree in the resource
U . Needless to say, V and U cannot not be arbitrary fine-grained resources, as
there will be a requirement that V injects into U .

In a similar way, the Hide constructor embeds a generalized refinement function
Φ, an abstract state g : V and a tree t : tree V A for the underlying computation
and generates a tree in the resource U . Again, U and V are not arbitrary but it
has to be possible to refine V into U .

Finally, it should be noticed that in the implementation of FCSL in Coq, the
proofs about the correctness of the injection from V injects into U has to be an
annotation provided to the Inject constructor. The same applies to Hide and the
proof of the corresponding elaboration. We elide the annotations here for the sake
of a cleaner presentation.

Operational semantics of action trees The judgement for small-step op-
erational semantics of action trees has the form w; t

π−→ w′, t′. It operates on
program states w and paths π to step the tree t from initial state w to a reduced
tree t′ in ending state w′. Intuitively, the path π identifies the position in the tree
to be reduced as follows::

Definition 3.50 (Paths). The inductive type path defines a path, i. e. the
reduction on a tree that can be mandated by a scheduler (a list of paths):

path =̂ ChoiceAct | SeqRet | SeqStep (π:path)

| ParRet | ParL (π:path) | ParR (π:path)

| HideStep (π:path) | HideRet | InjStep (π:path)

| InjRet

Figure 3.8 presents the rules for the operational steps a pair w; t can perform.
Stepping is undefined for the Unfinished and Ret trees. Given a tree denoting a
step by an atomic action Act a, the rule ActStep steps to a Ret v tree which
feeds the return value of the action. The side-condition of the rule checks that
the initial state w satisfies the internal precondition of the action, w ∈ Prea.
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(w,w′, v) ∈ Rela

w; Act a
ChoiceAct−→ w′; Ret v

ActStep

w; Par (Ret v1) (Ret v2) k
ParRet−→ w; k (v1, v2)

ParKont

w; t1
π−→ w′; t′1

w; Par t1 t2 k
ParL π−→ w′; Par t′1 t2 k

ParLeft

w; t2
π−→ w′; t′2

w; Par t1 t2 k
ParR π−→ w′; Par t1 t

′
2 k

ParRight

w; Seq (Ret v) k
SeqRet−→ w; (k v)

SeqKont

w; t1
π−→ w′; t2

w; Seq t1 k
SeqStep π−→ w′; Seq t2 k

SeqStep

w; Inject (Ret v)
InjRet−→ w; Ret v

InjRet

injects V U wU = wV ·∪ w0 wV ; t1
π−→ w′V ; t2 w′U = w′V ·∪ w0

wU ; Inject t1
InjStep π−→ w′U ; Inject t2

InjStep

w; Hide Φ g (Ret v)
HideRet−→ w; Ret v

HideRet

hides U V Φ Φ̂(g)(wU , wV ) wV ; t1
π−→ w′V ; t2 Φ̂(g′)(w′U , w

′
V )

wU ; Hide Φ g t1
HideStep π−→ w′U ; Hide Φ g′ t2

HideStep

Figure 3.8: Small-step operational semantics on action trees: The judgement
w; t

π−→ w′; t′ describes how a configuration w; t evolves into w′; t′ when the path
π is scheduled. The predicate injects V U (Definition 3.39) asserts that is possible
to coerce V to U . The predicate hides U V Φ (Definition 3.48) asserts that Φ

elaborates V , hiding it from U . Φ̂ is a valid elaboration predicate constructed from
Φ(cf. Lemma 3.47).
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The rules for parallel composition ParLeft, ParRight and ParKont; and
those for sequential composition SeqStep and SeqKont, treat the respective
constructors Par and Seq as execution contexts. For a tree which is a parallel
composition Par t1 t2 k, the path π identifies on which child to perform the
appropriate reduction, by the appropriate choice between ParLeft and ParRight

rules. This entails that the operational semantic on action trees is deterministic.
The rule ParKont captures the operational intuition that the parent’s execution
is suspended until both children have terminated.

The rules for injection and hiding treat the constructors as resource contexts,
delimiting the framing on the underlying resources. For an Inject t tree in the
InjStep rule, the reduction of the tree t1 is performed for a smaller state wV
instead of the large state wU , and the resulted state w′V is “plugged” back using
the addition w0 in order to obtain the resulting large state w′U . Moreover, we are
required to provide evidence that V can be lifted into a larger resource U , by the
assertion injects V U (Definition 3.39). When the Inject-guarded executions reach
a Ret v tree, the rules InjRet rule discards the resource-framed context.

The case for Hide trees is similar: the coarse-grained state wU and the fine-
grained state wV should be related by the elaboration functions Φ. The same
applies for the end states. Note that the modifications of the changes to the abstract
values g are recorded into g′. We are also required to proof that Φ is a proper
elaboration function for these resources, as denoted by hides U V Φ (Definition 3.48).
Finally, the rule HideRet discards the current layer of resource-scoping context.

The rules in 3.8 may fail to make a configuration w; t step for two different
reasons. The first reason is that the scheduled path π does not actually determine
an action or a redex in the tree t. For example, we may have t = Unfinished and
π = ParR. We consider such paths that do not determine an action or a redex in a
tree ill-formed. The second reason arises when π is indeed well-formed. Here, the
constructors of the path uniquely determine a rule of the operational semantics
that should be applied to step the tree. However, it cannot be applied because
some side-condition is not satisfied by the current state. We distinguish the two
cases by the following definitions:

Definition 3.51 (Good paths). Let t : tree U A and π : path. Then the predicate
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good t π is defined as follows:

good (Act a) ChoiceAct =̂ true

good (Seq (Ret v) ) SeqRet =̂ true

good (Seq t ) SeqRet π =̂ good t π

good (Par (Ret ) (Ret ) ) ParRet =̂ true

good (Par t1 t2 ) ParL π =̂ good t1 π

good (Par t1 t2 ) ParR π =̂ good t2 π

good (Inject (Ret )) InjRet =̂ true

good (Inject t) InjStep π =̂ good t π

good (Hide (Ret )) HideRet =̂ true

good (Hide t) HideStep π =̂ good t π

good t π =̂ false otherwise

Definition 3.52 (Safe path for an action tree). Let t : tree U A, π : path, and
state w ∈ CohU . We say it is safe to step a configuration w; t following the path
π, i. e. safe t π w if and only if:

safe (Act a) ChoiceAct w =̂ w ∈ Prea

safe (Seq (Ret v) ) SeqRet w =̂ true

safe (Seq t ) SeqStep π w =̂ safe t π w

safe (Par (Ret ) (Ret ) ) ParRet w =̂ true

safe (Par t1 t2 ) ParL π w =̂ safe t1 π w

safe (Par t1 t2 ) ParR π w =̂ safe t2 π w

safe (Inject (Ret )) InjRet w =̂ true

safe (Inject (t:tree V A)) InjStep π w =̂ injects V U ∧ w = wV ·∪ w0

∧ safe t π wV

safe (Hide (Ret )) HideRet w =̂ true

safe (Hide Φ g (t:tree V A)) HideStep π w =̂ hides U V Φ

Φ(g)(w,wV ) ∧ safe t π wV

safe t π w =̂ true

The definition of safe traverses the path and the tree, and in those cases when
the tree and the path match, collects the side-conditions on the initial states of
the operational semantics rules. Notice that Ret and Unfinished trees do not step,
but they are however always safe. In the Act a case, it will be always safe to step
in a state w which satisfies the internal precondition of the action, w ∈ Prea. We
relate this two notions through a progress property for the operational semantics
on action trees.
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Lemma 3.53 (Progress on action trees). Given a resource U , a state w ∈ CohU ,
an action tree t : tree U A, and a path π, if safe t π w, then either of the following
holds:

• ¬ good t π;

• ∃w′ t′, w; t
π−→ w′; t′.

The lemma above shows that if we can match the tree t with a path π and thus
manage to pick a reductions (i. e., good t π), then the safety predicate implies
the side conditions of the inference rule determined by π. This lemma allows for
safety and the operational stepping to be defined independently of each other.
In turn, defining safety independently from stepping will enable us to develop
a semantics in the style of Milner whereby we only give meaning to programs
that are well-proved in FCSL, analogously to how Milner-style only give semantic
meaning to well-typed programs. We close this sub-section with the statement of
several properties about trees and their operational semantics.

Lemma 3.54 (Properties of
π−→). The stepping relation

π−→ satisfies the following
properties:

Guarantee : if w; t
π−→ w′; t′ then wo = w′o

Coherence : if w; t
π−→ w′; t′ then if w ∈ CohU then w′ ∈ CohU

Stability : if w; t
π−→ w′; t′ then (w,w′) ∈ RU

Determinism : if w; t
π−→ w′; t′ and w; t

π−→ w′′; t′′ then t′ = t′′ ∧ w′ = w′′

Locality : if (w / p); t
π−→ w′; t′ then there exists w′′such that w′ = w′′ / p

and (w . p); t
π−→ (w′′ . p); t′

SafetyMono : if safe t π (w / p)then safe t π (w . p)

Framability : if safe t π (w / p) and (w . p); t
π−→ w′; t′ then there exists w′′

such thatw′ = w′′ . p and (w . p); t
π−→ (w′′ . p); t′

Most properties above lift properties of transitions and actions, already pre-
sented in Section 3.3, to action trees. The Framability property is direct con-
sequence of the Locality property of

π−→, and it is the FCSL equivalent of a
customary property from abstract separation logic (Calcagno et al. , 2007).

Denotational model of FCSL commands The denotational model of FCSL
programs is given in terms of sets of action trees. Given a FCSL type ascription
e : {P}A {Q}@ U , the denotational model of e, JeK : ProgU A, is a set T of trees
of increasing precision including the Unfinished tree, which is the coarsest possible
approximation of any program. The set may be infinite, as some programs may
only be reached in the limit, after infinitely many finite approximations.
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Jreturn vK =̂ {Unfinished,Ret v}
Jbind c1 c2K =̂ {Unfinished} ∪ {Seq t1 k | t1 ∈ Jc1K,∀x. k x ∈ Jc2K}

Jc1 ‖ c2K =̂ {Unfinished} ∪ {Par t1 t2 (λv.Ret v) | t1 ∈ Jc1K, t2 ∈ Jc2K}
Jact aK =̂ {Unfinished,Act a}

Jinject cK =̂ {Unfinished} ∪ {Inject t | t ∈ JcK}

JhideΦ,g cK =̂ {Unfinished} ∪
{

Hide Φ̂ g t | t ∈ JcK
}

Jfix fK =̂ lfp (λx. Jf xK)↑

Figure 3.9: Denotational model of FCSL commands as sets of trees. The operator
f ↑ constructs the monotone completion of f .

Definition 3.55 (ProgU A). Given a type A, we define the type of FCSL com-
mands denotations ProgU A as the following dependent record:

ProgU A =̂ {T : P (tree U A) | Unfinished ∈ T}

Figure 3.9 presents the denotational semantics of FCSL commands. For bind,
we employ the fact that the translation Jc2K can produce open values (i. e., trees
t2), where a variable x is not bound. We subsequently close them by constructing
a continuation k as a CiC function, in an indirect way, that is, quantifying over
all possible inputs, hence ∀x, k x ∈ Jc2K. In the case of hide, we appeal to

Lemma 3.47, which gives a constructive way to define an elaboration predicate Φ̂
from a given abstraction function Φ. In order to give denotational meaning to
the fix-point operator fix, we take advantage of the fact that the type ProgU A
(and also STU s) is a complete lattice. Then, we use Knaster-Tarski fix-point
combinator lfp to compute the denotational semantic model of the monotone
completion of the argument.

Definition 3.56 (Monotone Completion). Given a lattice (A,�) and a function
f : A→ A, the monotone completion of f , f ↑, is defined as follows:

f ↑ a =̂ sup{t | ∃ b. b � a ∧ t = f b}

Theorem 3.57 (Hoare-types are lattices). The datatypes A : STU s and ProgU A
define complete lattices. Moreover, given a complete lattice type T , the dependent-
function space Πx:A. T is also a complete lattice.

We have carried out these proofs in our Coq implementation (FCSL, 2017).
The domain theory library which implements, among others, the theories of
lattices, the Knaster-Tarski fix-point operator lfp, and their properties is inherited
from HTT (Nanevski et al. , 2010).

10Given a lattice (A,f,g,>,⊥), we say it is complete iff ∀ a, b ∈ A. (af b) ∈ A∧ (ag b) ∈ A.
That is, a lattice is complete iff every subset of the carrier set is also complete.
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3.4.2 Predicate Transformers

In this section we define the predicate transformers always and after which ensure
that the continuous stepping over a tree t:tree U A preserves safety and adherence
to an invariance predicate over configurations R : state → tree U A → Prop.
These transformers will later be used to instrument the denotational semantics of
Hoare-types ST s U in the sequel.

Definition 3.58 (Modal Predicates). The predicates alwaysζU w t P , alwaysU w t P
and afterU w t Q are defined relative to a schedule ζ, concurrent resource U , state w,
A-returning tree t : tree U A and arbitrary predicates P : state→ tree U A→ Prop
and Q : A→ state→ Prop:

alwaysζU w t P =̂ if ζ = π :: ζ ′

then ∀w2.(w,w2) ∈ RU =⇒
safe t π w2 ∧(
∀w3 t2. w2; t

π−→ w3; t2 =⇒ alwaysζ
′

U w3 t2 P
)

else ∀w2.(w,w2) ∈ RU =⇒ P w2 t

alwaysU w t P =̂ ∀ζ.alwaysζU w t P

afterU w t Q =̂ alwaysU w t (λ w′ t. ∀v′. t′ = Ret v′ =⇒ Q v′ w′)

always-safeU w t =̂ alwaysU w t (λ . .True)

The predicate alwaysU w t P expresses the fact that starting from the state
w, the tree t remains memory-safe and the predicate P holds of all intermediate
configurations made by a state and a tree, for any schedule ζ and under any
environment of the fine-grained resource U . The helper predicate alwaysζU w t P
is defined by induction on ζ. First, the fine-grained resource U is allowed to make
arbitrary rely-steps from w to w2. In the resulting configuration the predicate
P w2 t holds and, moreover, if the schedule ζ is non-empty (i. e. ζ = π::ζ ′), then
the resulting configuration must be safe, safe t π w2 and thus, by Lemma 3.53,
it can step. Consequently, if t steps to w3 and t2, then the predicate recurses on
ζ ′, w3 and t2. Notice that if the predicate alwaysζU w t P holds, it automatically
implies “preservation” of the safe predicate at each step of reduction of the tree t.
This is captured by the predicate always-safeU w t, which weakens alwaysU w t P
just to assert the safety of all configurations.

The predicate afterU w t Q encodes that t is safe; however, Q v′ w′ only holds
if t steps completely to Ret v′ in configuration w′. In other words, the predicate
after asserts that a certain postcondition holds of the final configuration after
interleaving all the steps of a scheduler and the environment. Thus, we use after
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to assert the fact that the postcondition of a triple holds once—and only if—all
the paths prescribed by the scheduler have been taken.

We gather some derived lemmas for the predicate transformers described above.

Proposition 3.59 (Properties of Predicate Transformers). Given a fine-grained
resource U , a tree t : tree U A, and a state w, the modal predicate transformers
satisfy the following properties:

Safety : alwaysπ::ζ
U w t P =⇒ safe w t π

Weakening : alwaysU w t P =⇒ always-safe w t

Coherence : alwaysU w t =⇒ w ∈ CohU

Universal : always-safeU w t =⇒
(alwaysU w t (λw′ t′.∀x. P x w′ t′)

⇐⇒ ∀x. alwaysU w t (λw′ t′. P x w′ t′))
Implication : afterU w t Q1 =⇒

(∀ v, w ∈ CohU . Q1 v w =⇒ Q2 v w) =⇒ afterU w t Q2

Framing : afterU (w . p) t Q =⇒
afterU (w / p) t (λv w′.∃w′′. w′ = w′′ / p ∧ Qv (w′′ . p))

SeqClosure : t2 ∈ {Seq t1 k | ∀x. k x ∈ K x} =⇒
afterU w1 t1 (λ v w. ∀ t. (t ∈ K v) =⇒ afterU w t Q) =⇒

afterU w1 t2 Q
ParClosure : afterU ([s1 | j | o] . s2) t1 Q1 =⇒

afterU ([s2 | j | o] . s1) t2 Q2 =⇒
afterU ([s1 ◦ s2 | j | o]) (Par t1 t2 (λx.Ret x)) λv ′ w′. ∃s′1 s′2 j′ o′. w′ = [s′1 ◦ s′2 | j′ | o′]

∧ P1 v ′. 1 [s′1 | j′ | o′] . s′2
∧ P2 v ′. 2 [s′2 | j′ | o′] . s′1


InjClosure : wv ·∪ wO ∈ CohU =⇒ afterV wV t Q =⇒

afterU (wV ·∪ wO) (Inject t)(
λ v′ w′. ∃w′V w′0. w

′ = w′V ·∪ w′0 ∧ w′V ∈ CohV

∧ (w0, w
′
0) ∈ RW ∧ Q v′ w′V

)
HideClosure : Φ̂(g)(wU , wV ) =⇒ hides U V Φ =⇒ afterV wV t Q =⇒

afterU wU (Hide Φ̂ g t)

(λv w′U . ∃w′V g′. Φ̂(g′)(w′U , w
′
V ) ∧Q v w′V )

These lemmas are fundamental to proving the soundness of FCSL (Theo-
rem 3.64). In particular, the closure lemmas are necessary to prove the soundness
of the rules for FCSL commands. The proofs of these lemmas can be found in the
Coq implementation (FCSL, 2017).
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The Safety,Weakening,and Coherence properties reflect the internals of
the modal predicate always. The Universal lemma states that the modal predi-
cate always commutes with universal quantification. The always-safe hypothesis
enables the property to hold even when the quantification over x is vacuous. The
Implication lemma corresponds to postcondition weakening, which is necessary
for the soundness of the Conseq rule. The Framing lemma states that if we can
assert after that a postcondition Q holds in a small configuration with a explicit
frame: w . p, then we could have enlarged the state with p, w / p and still prove
that the postcondition holds in the enlarged state.

The closure lemmas state the algebraic properties of after with regard to FCSL
commands, and they are used to justify the latter soundness (cf. Section ??).
SeqClosure states that Q holds at the end of the composed tree if final configu-
ration of the prefix t1 can be used as an initial configuration for the suffix to show
Q holds after. ParClosure holds intuitively because when (an approximation t2
of) c2 takes a step over its private and shared state, it amounts to RU environ-
ment interference on (an approximation t1 of) c1, and vice versa. The pattern of
shuffling subjective self and other components is inherited from the Par rule: the
parallel composition uses [s1 ◦ s2 | j | o] whereas the left and right child threads
use [s1 | j | o] / s2 and [s2 | j | o] / s1, respectively.

The last two lemmas address the closure of after with regard to injection
hiding. These lemmas require to check auxiliary side conditions related to the
entanglement of the resources involved. InjClosure states that if after holds for
some predicate Q on a state wV from a “small” concurroid V, it will hold in
a large concurroid U = V oW with an additional state wO ∈ CohW reachable
by RW . HideClosure entails that after is closed over hiding, i. e. over resource
scoping. Given the abstraction function Φ, we need to show that the elaboration
Φ̂ (Definition 3.45) holds over the initial states from the coarser state wU to the
more fine-grained wU . We also need to show that Φ is a proper refinement for
hiding, hides U V Φ (Definition 3.48). Finally, we notice that the final state w′V of
the refined execution in V is related to the final state w′U of the coarse execution in

U by the same refinement function Φ̂, but with a different seed g′ for the auxiliary
state, hence the conjunct Φ̂(g′)(w′U , w

′
V ).

3.4.3 Denotational Semantics of Hoare Types

Hoare Types The definition of the v ordering (Definition 3.3) on Hoare-specs
evidences the fact that the Hoare triple [v̄].{P}A {Q}@ C is essentially syntactic
sugar for a different kind of Hoare-type STC s, translated as follows:

Definition 3.60 (Hoare-Triples). FCSL Hoare-triples [v̄].{P}A {Q}@ C are trans-
lated to Hoare-types STC s, unfolding the context of logical variables [v̄] as follows:

[v̄].{P}A {Q}@ C =̂ STC (λw.∃v̄. w |= p, λr i m.∀v̄. i |= p =⇒ m |= q)
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In these Hoare-types, postconditions are binary11predicates q : state→ A→
state→ Prop. That is, they are relations ranging over input and output states w
and w′, following the VDM-style (Bjørner & Jones, 1978) of specifications we have
already used in Chapter 2 for HTTcc. The advantage of this implementation of
Hoare types is that the logical variables are explicitly bound, making their scoping
explicit. We use this formulation of Hoare triples in in our Coq implementation
of FCSL model (FCSL, 2017). Unlike the case for HTTcc in Chapter 2, we
do implement the [v̄].{P}A {Q}@ C types in Coq as well and use the latter to
implement clients and case studies. This is because, unlike the case for HTTcc,
FCSL logical variable contexts are uniform and the translation 3.60 can be
implemented right away.

Figure 3.10 presents the typing-rules for FCSL commands. Notice that since
we embrace binary post-conditions, we recover a more HTT-like approach to the
specification of bind in the Seq rule. In fact, the pre- and postcondition pair
denotes the same specification presented in Chapter 2 for sequential composition—
and also the original HTT rule from (Nanevski et al. , 2010). This rule, which does
not require the annotation of the intermediate assertion R (cf. Seq, Figure 3.5),
enables Coq’s type-checker to infer weakest pre- and strongest postconditions from
sequential compositions.

The rules Ret and Inject ditch the explicit R frames we presented in Figure 3.5.
Instead, having access in the postcondition to the initial state allows us to stabilize
the assertion explicitly thus stating that the initial and ending states are connected
via environment steps: (i,m) ∈ RU for the full states in the case of Ret, and
(i2,m2) ∈ RV in Inject for the state from the resource V which is entangled with
the smaller state U . The Act rule also makes explicit that the effect of an atomic
action takes place after stabilization both in pre- and post-states.

The rule Par is slightly more involved, as the self-other shuffling of the
subjective state required by ~ is made explicit in both the initial and ending
states of the post-condition. Thus, we introduce the following definition to make
the post-condition of Par more palatable:

Definition 3.61 ([ , ]~⇒ [ , ]). The operator [ , ]~⇒ [ , ] in the post-condition
of the PAR rule in Figure 3.10 is defined as follows:

(i, r,m) |= [p1, p2]~⇒ [q1, q2] ⇐⇒
∀ i1 i2. i = [i1 ◦ i2 | ij | io] =⇒ p1 [i1 | ij | io ◦ i2] =⇒ p2 [i2 | ij | io ◦ i1] =⇒

∃m1m2. m = [m1 ◦m2 | mj | mo]

∧ q1 [i1 | ij | io ◦ i2] r.1 [m1 | mj | mo ◦m2]

∧ q2 [i2 | ij | io ◦ i1] r.2 [m2 | mj | mo ◦m1]

11We turn a blind eye and on the the type of postconditions and will not “count” the result
argument A. Then, by calling the postconditions binary, we intended to make a contrast with
more traditional approaches where postconditions are predicates over the ending-state—or, the
ending-state plus the return value.
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Γ ` e1 : STC (p, q) Γ ` e2 : Πx:B. STC (s2 x)

Γ ` bind e1 e2 : STC (λ i. p i ∧ ∀ r j. q i r j =⇒ (s2 r) .1 j,

λ i r m. ∃ y k. q i y k ∧ (s2 y) .2 k rm)

Seq

Γ ` v : A

Γ ` ret v : STC (λ . True, λ i r m. (i,m) ∈ RC ∧ r = v)
Ret

Γ ` e : STC s1 s1 v s2

Γ ` do e : STC s2

Conseq

Γ ` f : (Πx:A. STC (s x))→ Πx:A. STC (s x)

Γ ` fix f : Πx:A. STC (s x)
Fix

Γ ` e1 : STC (p1, q1) Γ ` e2 : STC (p2, q2)

Γ ` e1 ‖ e2 : STC (p1 ~ p2, [p1, p2]~⇒ [q1, q2])
Par

Γ ` e : STU (p, q) injects U V
Γ ` inject e : STV (λ i. ∃ i1 i2. i = i1 ·∪ i2 ∧ i1 ∈ CohU ∧ p i1,

λ i r m. ∀ i1 i2. i = i1 ·∪ i2 =⇒ i1 ∈ CohU =⇒
∃m1m2.m = m1 ·∪m2 ∧ q i1 rm1 ∧ (i2,m2) ∈ RW)

Inject

Γ ` e : ST(PoU)oV (p, q) hides U V Φ

Γ ` hideΦ,g e : ST(PoU) (λ i. ∃ j. Φ̂(g)(i, j) ∧ p j,

λ i r m. ∀ j. Φ̂(g)(i, j) =⇒ p j =⇒
∃ k g′. Φ̂(g′)(m, k) ∧ q j r k)

Hide

Γ ` act a : STU (λ i. ∀ j′. (i, j) ∈ RU =⇒ j ∈ Prea,

λ i r m. ∃ j k. (i, j) ∈ RU ∧ (j, k, r) ∈ Rela ∧ (k,m) ∈ RU)

Action

Figure 3.10: Typing rules for FCSL commands. A spect (p, q) in a Hoare-types
STC (p, q) consists of an unary precondition p and a binary postcondition q. The
postcondition [p1, p2]~⇒ [q1, q2] in Par is explained in Definition 3.61.
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Intuitively, the assertion captures asserts that for any split i = [i1 ◦ i2 | ij | io] of
the initial state which satisfies the pre-condition p1 ~ p2 of the rule, there exists a
split of the post-state m = [m1 ◦m2 | mj | mo] such that

(q1 [i1 | ij | io ◦ i2] r.1) ~ (q2 [i2 | ij | io ◦ i1] r.2)

It should be noticed that if p1 and p2 are precise, and therefore determine a unique
split of the state, then the definition translates to:

(λ i rm. p1 i =⇒ q1 i r m) ~~ (λ i rm. p2 i =⇒ q2 i r m)

where ~~ is the point-wise lifting of ~ to binary postconditions.

Given the definition above, it becomes clear that the Par rule is just applying
the translation of unary Hoare-triples into binary Hoare-types (Definition 3.60).
The intuition that e1 and e2 are executed independently of under ~-shuffling, and
then that their self-contributions are combined back in a way that satisfy the
preconditions is preserved.

Verify predicate We use after to define the verify predicate transformer we
introduced in Section 3.2.2 to present FCSL structural rules.

Definition 3.62 (verify predicate transformer). Given e : STC A and a predicate
R : A→ state→ Prop, the verify predicate

verifyU e R w =̂ w ∈ CohU ∧ ∀ t ∈ JeK . afterU w t R

As we have mentioned before when we presented the structural rules, the verify
predicate realizes FCSL verification framework. Figure 3.11 presents a series of
lemmas, which are derived from the properties of the after predicate, whose role
is to allow the user to step through a FCSL proof obligation, in a similar way one
steps over a Hoare-logic proof outline on the whiteboard. We inherit the habit of
referring to these lemmas as Floyd-style rules from (Nanevski et al. , 2010).

The vrfRet lemma states that if Q r holds in the initial states, then the
ending state of ret r satisfies Q r; in other words, ret r does not change the state
and just returns r. To account for the possibility that the environment threads
may change the state, we stabilize Q r in the premise by means of the assertion:

(∀m. (w,m) ∈ RU =⇒ Q v m)

Thus, rather than asserting the validity of the predicate (Q v) on w, we allow
for the environment to do any number of steps from w to any state m with
(w,m) ∈ RU , and then asserts whether (Q v) still holds of that final state m.

The vrfSeq lemma implements the customary Dijkstra-style rule for computing
a predicate transformer of a sequential composition, by sequentially nesting two
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vrfRet : w ∈ CohU =⇒ (∀m. (w,m) ∈ RU =⇒ Q v m) =⇒
verifyU (ret v) Q w

vrfSeq : verifyU e1 (λ rm. verifyU (e2 r) (Q rm) w) =⇒
verifyU (x← e1; e2 x) Q w

vrfPar : w = [w1 ◦ w2 | wj | wo] =⇒ verifyU e1 Q1 ([w1 | wj | wo ◦ w2] =⇒
verifyU e2 Q2 ([w2 | wj | wo ◦ w1] =⇒

verifyU (e1 ‖2) (λ r. Q1 r.1 ~ Q2 r.2) w
vrfAct : (∀ j. (w, j) ∈ RU =⇒ j ∈ Prea ∧

∀ r k m. (j, k, r) ∈ Rela =⇒ (k,m) ∈ RU =⇒ Q rm) =⇒
verifyU (act a) Q w

vrfInject : wu ∈ CohU =⇒
verifyU e1 (λ r k. ∀ w. (k ·∪m) ∈ CohUoV =⇒

(wv, w) ∈ RV =⇒ Q r (k ·∪m)) wu =⇒
verify(UoV) (inject e) Q (wu ·∪ wv)

vrfHide : hides U V Φ =⇒ Φ̂(g)(wu, wv) =⇒
verifyV e (λ r w2. ∀ f w1. Φ̂(f)(w1, w2) =⇒ Q rw2) wv =⇒

verifyU (hideΦ,g e) Q wu

Figure 3.11: FCSL Floyd-style lemmas for proof transformation.
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applications of verify. Thus it allows us to step through sequential computations
in a proof outline. The vrfAct lemma says that if Q is a postcondition for an
action a in the pre-state w, then the return value r and the final state m should
be such that are related by Rela (i.e., such that (w,m, r) ∈ Rela) and Q rm.
However, we need to allow for environment steps before and after applying the
effect of the atomic action. Thus, we need to stabilize the assertion twice. The
first step, which takes us from w to an intermediate state j, needs to be a rely
step that preserves the precondition for the atomic action, thus jinPrea. Then,
we stabilize the ending state, thus we demand that the ending state m is obtained
from environment steps (k,m) ∈ RU after any state k resulting from the effect of
atomic action on the intermediate state j, i. e. (j, k, r) ∈ Rela.

The VrfPar lemma encodes the usual property of separation logics that if
the initial state w can be split into w1 and w2, such that e1 executes in w1 to
obtain postcondition Q1, and e2 executes in w2 to obtain postcondition Q2, then
the ending state of e1 ‖ e2 can be split in the same way. However, the subjective
nature of FCSL’s Par rule, witnessed by the use of ~ (Definition 3.2), entails that
such split is made in particular way. The self -components of the children states
divide the self -component of the parent (ws = w1 ◦ w2). At the same time, the
other -component of e1 adds the self -components of e2 (wo ◦w2) to capture the fact
that e2 becomes part of the concurrent environment of e1, and vice versa. The
joint component wj represents shared state, so it is propagated to both children
without changing. Finally, the end-result of e1 ‖ e2 is a pair r = (r.1, r.2) of type
A1 × A2, combining the return results of e1 and e2. Thus, the postcondition of
e1 ‖ e2 splits r and passes each projection to Q1 and Q2.

The VrfInject rule allows us to verify a post-condition Q of an enlarged state
wu ·∪ wv, when lifting a computation e : STU (P,Q) from a smaller resource U .
The premise requires that wu is a valid state for the smaller resource U , and that
on the smaller state we can verify a “smaller” version of the post-condition Q,
which behaves as Q on the U part and it is stabilized on the wv addendum:

(λ r k.∀ w. (k ·∪m) ∈ CohUoV =⇒ (wv, w) ∈ RV =⇒ Q r (k ·∪m))

Finally, the VrfHide lemma allows us to verify a post-condition Q after the
hiding of the resource V with Φ. Given two states wu, wv such that the elaboration
Φ̂(g)(wu, wv) holds and, moreover, hides U V Φ, we can verify that Q holds on wu
if we can verify a variant of Q holds on wv. The latter variant of Q is akin to
the stabilizations used before, but connects the states through the Φ̂ abstraction
function rather than environment steps.

Denotational Semantics of Hoare-Types We use the after predicate (Defi-
nition 3.58) to ensure that the tree approximations which constitute the model
of our commands are memory safe, respect mutual exclusion, and satisfy their
FCSL specifications. Thus, we define the denotational meaning of Hoare-types as
follows:
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Definition 3.63 (Denotational Semantics of FCSL’s Hoare Types). Given a
resource U and a specification (p, q), the Hoare-type STU (p, q) is defined as:

STU (p, q) =̂

{
T : ProgU A

∣∣∣∣∣ ∀w t. t ∈ T =⇒ w ∈ CohU =⇒
w |= p =⇒ afterU w t (q w)

}

That is, the denotational meaning of Hoare-types is given by a dependent record
consisting of a set of trees T and a proof that, for all trees t ∈ T and all valid
states w ∈ CohU which satisfy the precondition p, after every execution of t from
the initial state w the postcondition (q w) holds.

Then, the intuition for the denotational meaning of a FCSL type ascription
e : {P}A {Q}@ U becomes clear: JeK denotes a set of action trees for the resource
U such that all trees can be stepped from a state satisfying the precondition p,
until a final result value v is obtained in a state that satisfies the post-condition q.
The “operational flavour” of this definition which connects denotations through a
predicate-transformer implementing pool-semantics under all possible fair sched-
ules is reminiscent of the operational semantics of CSL-like program logics e. g.
Deny-Guarantee (Dodds et al. , 2009). The “modal flavour”, denoted by the after,
and always predicate transformers which enforce persistent validity of an assertion,
over always-safe states, is reminiscent of step-indexed logics like Iris (Jung et al. ,
2015), where the denotation of triples is given explicitly in terms of a � modality.

Soundness We close this section by stating the main soundness result of FCSL.
It consists of the proof that if a FCSL judgement Γ ` e : T holds, then JΓK `CiC
JeK : JT K. As we have mentioned before12, FCSL is implemented as a shallow
embedding in Coq’s underlying metatheory, CiC. Here, this entails two particular
benefits. First, the denotation of contexts JΓK is trivially defined as the point-
wise translation of FCSL ascriptions in the contexts to their CiC counterparts.
Second, and foremost, that we do not need to establish the soundness of pure type
ascriptions e : A, as they are lifted from Coq. Thus we tackle only judgements
e : STU A. The main soundness result follows.

Theorem 3.64 (Soundness of FCSL). If Γ ` e : STU A then JΓK `CiC JeK :
JSTU AK.

Proof. The proof is discharged by induction on the structure of FCSL commands,
as presented in Figure 3.10. For each of these commands, we need to show
that their underlying denotational semantics JeK, defined in Figure 3.9, together
with their specifications indeed satisfy the after assertion in the definition of
Hoare-types (Definition 3.63). These proofs are discharged appealing to the
predicate-transformer’s closure lemmas from Proposition 3.59, e. g. SeqClosure,

12Ad nauseam, by now.
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InjCLosure, etc.. The only special case is that of the fixed-point operator
fix, whose soundness arises from the fact that Hoare-types define a complete
lattice (Theorem 3.57), and the appeal to the Knaster-Tarski fixed point theorem.
The full details of these proofs can be found in our Coq sources (FCSL, 2017).

3.5 Related Work

Fine-Grained Resources FCSL builds on the previous work on subjective
auxiliary state and SCSL logic (Ley-Wild & Nanevski, 2013). The SCSL logic
contained the distinction between self and other views, which was essential for
compositional implementation of auxiliary state. However, it contained exactly
one coarse-grained resource, with no ability to create and dispose new resources.
In contrast, FCSL can introduce any number of fine-grained resources in a scoped
way. Feng’s Local Rely-Guarantee (LRG) (Feng, 2009) is, to the best of our
knowledge, the first work that reconciled fine-grained reasoning in the style of
RG with framing and hiding at the level of transitions (similar to our Inject and
Hide). We differ from LRG in that we introduce communication and subjectivity
into the mix; thus our injection and hiding rules take self and other views into
account. The latter are a compositional form of auxiliary state, whereas LRG in
practice has to use the classical, non-compositional form of auxiliary state (Owicki
& Gries, 1976; Ley-Wild & Nanevski, 2013).

Shared Regions & Protocols The work on Concurrent Abstract Predicates
(CAP) (Dinsdale-Young et al. , 2010) originally introduced a notion of shared
region that serves a similar purpose as concurroids, in that regions circumscribe
a chunk of shared heap with a protocol governing its evolution. A protocol is
defined by a set of atomic actions, which are RG-style transitions on private state
and a region. In addition to heaps, regions may contain abstract capabilities that
identify enabled actions. Thus there is a subtle mutual recursion in a protocol
definition between an action and the capability to perform the action. A recurring
pattern for this approach is quantification over all possible capabilities and placing
them in a shared region, to be used up if needed in the execution of the protocol.

The CAP framework could atomically change only one region; a restriction
lifted in the more recent works on Views (Dinsdale-Young et al. , 2013), HO-
CAP (Svendsen et al. , 2013), iCAP (Svendsen & Birkedal, 2014), and Iris (Jung
et al. , 2015, 2016; Krebbers et al. , 2017b,a). Following the Views framework,
these logics introduce view shifts—or a similar mechanism—to synchronize changes
across several regions. Once allocated, CAP’s regions have dynamically-scoped
lifetime, and they can be disposed by a particular thread if it collects all corre-
sponding region’s capabilities. To the best of our knowledge, neither HOCAP nor
iCAP nor Iris allow the removal or scoped hiding of a shared region.

In contrast with CAP and their successors, FCSL does not require capabilities
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to perform actions, as these are naturally represented in the self and other views
associated with a resource (and can also be seen as auxiliary state). Such auxiliary
state is simpler than capabilities; it is not subject to ownership transfer, and
there is no need to quantify over all capabilities. In our experience, this simplicity
extends to the specification of invariants and transitions, and to the proofs of
stability. In FCSL, synchronizing changes over a number of concurroids is achieved
directly at the level of transitions by means of entanglement, and at the level
of programs by allowing actions to be defined over any concurroid, including
entangled ones. Thus, no view shifts are required.

The burden of stability proofs is further reduced in FCSL by formulating
private heaps as a separate resource that one may, but need not, entangle with.
Thus, when an action manipulates only the internal state of a resource, the
attendant stability proofs can ignore private heaps, e. g., the take action of a
ticketed lock (Nanevski et al. , 2014b; FCSL, 2017) and the resource J for Jayanti’s
snapshot we will present in the next Chapter. Moreover, the communication in
FCSL makes it possible for concurroids to pass heaps between each other directly,
rather than going through private state.

Higher-order auxiliary code. FCSL auxiliary code is first order and the
transitions of a resource are closed, in the sense that resources cannot13be extended
with transitions from other resources, if not by combining acquire and release
transitions. In contrast, the work by Jacobs and Piessens (Jacobs & Piessens,
2011) relies on the parameterization a program and its proof with auxiliary code
that works over the state of other resources and that is invoked by the program
as a kind of callback. A well-known challenge of parameterized a program by an
auxiliary function is exhibited when the point at which to execute the auxiliary
function can be determined only after the program has already terminated. In
contrast, FCSL does not have this restriction, as we will see in the next Chapter.

STSs & Contextual Refinement CaReSL (Turon et al. , 2013a) uses the
same notion of shared region as CAP, though it specifies the transitions in a
manner closer to FCSL, namely by means of STS’s. However, the logic does not
directly provide subjective self and other views of a resource, but it provides
a notion of tokens, whose ownership is exchanged between a thread and its
environment. CaReSL assertions explicitly allow statements only about self-owned
tokens, not other -owned ones. Thus, reasoning about the lack of logical changes to
environment-owned data has to be encoded with a level of indirection, potentially
quantifying over all tokens, similar to CAP’s quantification over capabilities. A
frequent side condition in CaReSL rules is that various assertions are token-pure,
which does not have a direct correspondent in FCSL. Similar to CAP, CaReSL

13Currently, at least. This restriction is addressed in the new version of FCSL in development.
I will update this manuscript with the appropriate references in time.
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allows actions that work over only a single region. Moreover, CaReSL does not
consider removal or scoped hiding of shared regions, although it can be emulated
by introducing an empty “final” protocol state.

CaReSL can reason about fine-grained data structures by means of contextual
refinement (a generalization of linearizability). In contrast, in FCSL we reason
about fine-grained data structures using history based auxiliary state (Sergey
et al. , 2015b,a; Delbianco et al. , 2017a). Chapter 4 will showcase a particular
design of relinkable histories, which enable reasoning about fine-grained objects
with non-fixed linearization points.

Subjective State and PCMs Similarly to FCSL, Iris makes use of PCMs as
a generic mechanism to describe state, which can be split between parallel threads.
However, neither iCAP nor Iris have explicit subjective dichotomy of the auxiliary
state, which makes encoding of thread-specific contributions in them less direct
comparing to FCSL. CoLoSL (Raad et al. , 2015) defines a different notion of
thread-local views to a shared resource, and uses overlapping conjunctions (Hobor
& Villard, 2013) to reconcile the permissions and capabilities, residing in the shared
state between parallel threads. Overlapping conjunctions afford a description
of the shared structure mirroring the recursive calls in the structure’s methods.
In FCSL, such machinery is not required, as self and other suffice to represent
thread-specific views, and joint state does not need to be divided.

Abstract atomicity FCSL atomic actions are restricted by the operational
semantic to occur in a unique step. TaDA (da Rocha Pinto et al. , 2014), introduced
a novel approach, which introduces a new judgement form, 〈P 〉 e 〈Q〉, capturing
that e has a precondition P and postcondition Q, but is also abstractly atomic:
e and its concurrent environment will maintain the validity of P through the
execution until at one point e makes an atomic step that makes Q hold. After that
point, Q may be invalidated, either by future steps of e, or by the environment.
The specification style of TaDA is close to ours in the sense that it employs atomic
tracking resources, that are reminiscent of history auxiliary state (cf. Chapter 4).
However, the metatheory of TaDA does not support ownership transfer. In
contrast, FCSL can verify fine-grained data-structures with helping using standard
auxiliary state (Sergey et al. , 2015b). Iris has recently adopted a flavour of
abstract atomicity which differs from TaDA’s in that it is encoded using the
support for higher-order state available in Iris. Otherwise, the fragment of the
proof theory that handles abstract atomicity is almost identical in both logics.

Linearizability Reasoning Although we have not established a formal con-
nection between FCSL specifications and linearizability, FCSL has been used
to verify both linearizable fine-grained concurrent data structures (Sergey et al.
, 2015b,a; Delbianco et al. , 2017a) and other data-structures which are not
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linearizable (Sergey et al. , 2016) and whose correctness is given by further correct-
ness criteria, e. g. Concurrency-Aware-Linearizability (Hemed & Rinetzky, 2014;
Hemed et al. , 2015). This issue will be central in the next chapter, where we
present a novel technique for specifying and verifying fine-grained data structures
with non-fixed linearization points implemented on top of FCSL.

3.6 Summary

This chapter presented fine-grained concurrent resources, a novel model for scalable
shared-variable concurrency verification, based on communicating state transition
systems (STS); and FCSL—a logic and verification framework which enables proof
modular verification of complex concurrent data structures. In this logic, client
proofs are developed in FCSL out of the specs, and not the code of programs,
therefore we can substitute different implementations of different algorithms in
clients, without disturbing the clients’ proofs.

A fine-grained resource is specified by a resource invariant, as in the CSL
family of program logics, but it also adds transitions in the form of relations
between resource states, following the influence of R/G and its derivatives. The
result is a powerful logic, which gets the best of both worlds. In addition to the
case studies presented in this chapter, FCSL has been used to verify a number of
non-trivial fine-grained concurrent data structures (Sergey et al. , 2015b,a, 2016).

FCSL provides a flexible framework in which clients of the logic can specify their
own fine-grained concurrent resources (including the structure for the auxiliary
state), adjusting to the demands of the task at hand. All of the auxiliary state
features we visited in this chapter are user-defined concepts, and therefore they
are not hardwired into the semantics of the logic. This will prove a remarkable
advantage in the next chapter, where we will use FCSL to implement, off-the-shelf,
a novel technique to reason about fine-grained concurrent objects with contrived
correctness arguments.

We will show how the rich specification language of FCSL suffices to encode
the correctness criteria of these data structures as a part of the resource invariants,
without having to modify the meta-theory of FCSL. We illustrate the method by
verifying (mechanically in Coq) an intricate optimal snapshot algorithm due to
Jayanti (Jayanti, 2005), together with some concurrent clients of the snapshot data
structure. This algorithm features future-dependent, non-local and non-regional
linearization points, making it very intricate to reason with. Most program logics
aimed at similar verification tasks require specific meta-theory (Chakraborty et al.
, 2015; Liang & Feng, 2013). Surprisingly, using FCSL we can do without.
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Concurrent Data Structures Linked in Time

Linearizability (Herlihy & Wing, 1990) is the de facto correctness criterion for
reasoning with concurrent fine-grained data-structures. It works by relating the
concurrent history of a program with its sequential behaviour. More precisely, for
each concurrent history of an object, linearizability requires that there exists a
mapping to a sequential history, such that the ordering of matching call/return
pairs is preserved either if they are performed by the same thread, or if they do
not overlap. To prove linearizability, one usually has to identify linearization
points in programs or object methods, showing that this particular point is the
single, atomic, point where the effect of the operation occurs.

However, for certain complex concurrent objects, proving them to be lineariz-
able is not a straightforwards task: the linearization points of their methods are
not fixed by the structure of the programs themselves, but rather depend on
intricate interactions with the environment. Traditionally, verifying such objects
requires a dedicated metatheory, e.g. supporting prophecy variables, capable of
reasoning about their highly speculative nature.

In contrast, in this chapter we propose a new method for reasoning about
concurrent objects with such linearization points, based on an existing separation
logic, FCSL (Nanevski et al. , 2014a). The method embraces the dynamic nature
of linearization points, and encodes it as part of the structure’s auxiliary state, so
that it can be dynamically changed by auxiliary code, in place.

We name the idea linking in time, because we reason about temporal ordering
of events using the same logical features that one would use to reason about
spatial linking via pointers in separation logic. Moreover, relying on separation
logic to reason about time enables that linearization points of a procedure can be
specified locally, even when they may be positioned in other procedures in the
classical approach. Furthermore, the auxiliary state provides a convenient way
to concisely express the properties essential for reasoning about clients of such
concurrent objects.

We will illustrate our technique by presenting the mechanization in FCSL of an
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optimal concurrent-snapshot algorithm originally introduced by Jayanti (Jayanti,
2005), whose correctness itself has a highly-speculative nature, relying on non-
trivial arguments about its non-fixed linearization points.

4.1 Introduction

Formal verification of concurrent objects commonly requires reasoning about
linearizability (Herlihy & Wing, 1990). This is a standard correctness criterion
whereby a concurrent execution of an object’s procedures is proved equivalent, via
a simulation argument, to some sequential execution. The clients of the object
can be verified under the sequentiality assumption, rather than by inlining the
procedures and considering their interleavings. Linearizability is often established
by describing the linearization points (LP) of the object, which are points in
time where procedures take place, logically. In other words, even if the procedure
physically executes across a time interval, exhibiting its linearization point enables
one to pretend, for reasoning purposes, that it occurred instantaneously (i. e.,
atomically); hence, an interleaved execution of a number of procedures can be
reduced to a sequence of atomic events.

Reasoning about linearization points can be tricky. Many times, a linearization
point of a procedure is not local, but may appear in another procedure or thread.
Equally bad, linearization points’ place in time may not be determined statically,
but may vary based on the past, and even future, run-time information, thus
complicating the simulation arguments. A particularly troublesome case is when
run-time information influences the logical order of a procedure that has already
terminated. This chapter presents a novel approach to specification of concurrent
objects, in which the dynamic and non-local aspects inherent to linearizability
can be represented in a procedure-local and thread-local manner.

The starting point of our idea is to realize what are the shortcomings of
linearizability as a canonical specification method for concurrent objects. Con-
sider, for instance, the following two-threaded program manipulating a correct
implementation of stack by invoking its push and pop methods, which are atomic,
i. e., linearizable:

push(3); push(4)

t1 := pop(); t2 := pop();

Assuming that the execution started in an empty stack, we would like to derive that
it returns an empty stack and (t1, t2) is either (3, 4) or (4, 3). Linearizability
of the stack guarantees that the overall trace of push/pop calls is coherent with
respect to a sequential stack execution. However, it does not capture client-specific
partial knowledge about the ordering of particular push/pop invocations in sub-
threads, which is what allows one to prove the desired result as a composition of
separately-derived partial specifications of the left and the right thread.
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This thread-local information, necessary for compositional reasoning about
clients, can be captured in a form of auxiliary state (Owicki & Gries, 1976) (a
generalization of history variables (Abadi & Lamport, 1988)), widely used in
Hoare-style specifications of concurrent objects (Sergey et al. , 2015b; Ley-Wild
& Nanevski, 2013; Jung et al. , 2015, 2016). A testament of expressivity of
Hoare-style logics for concurrency with rich auxiliary state are the recent results
in verification of fine-grained data structures with helping (Sergey et al. , 2015b),
concurrent graph manipulations (Sergey et al. , 2015a), barriers (Jung et al. ,
2016; Dodds et al. , 2016), and even non-linearizable concurrent objects (Sergey
et al. , 2016).

Although designed to capture information about events that happened concur-
rently in the past (hence the original name history variables), auxiliary state is
known to be of little use for reasoning about data structures with speculative execu-
tions, in which the ordering of past events may depend on other events happening
in the future. Handling such data structures requires specialized metatheory (Liang
& Feng, 2013) that does not provide convenient abstractions such as auxiliary state
for client-side proofs. This is one reason why the most expressive client-oriented
concurrency logics to date avoid reasoning about speculative data structures
altogether (Jung et al. , 2016).

The surprising result we present in this chapter is that by allowing certain
internal (i. e., not observable by clients) manipulations with the auxiliary state, we
can use an existing program logic for concurrency, like, e. g., FCSL (Nanevski et al.
, 2014a; Sergey et al. , 2015a), to specify and verify algorithms whose linearizability
argument requires speculations, i. e., depends on the dynamic reordering of events
based on run-time information from the future. To showcase this idea, we provide a
new specification (spec) and the first formal proof of a very sophisticated snapshot
algorithm due to Jayanti (Jayanti, 2005), whose linearizability proof exhibits
precisely such kind of dependence.

While we specify Jayanti’s algorithm by means of a separation-style logic,
the spec nevertheless achieves the same general goals as linearizability, combined
with the benefits of compositional Hoare-style reasoning. In particular, our Hoare
triple specs expose the logical atomicity of Jayanti’s methods (Section 4.3), while
hiding their true fine-grained and physically non-atomic nature. The approach
also enables that the separation logic reasoning is naturally applied to clients
(Section 4.4). Similarly to linearizability, our clients can reason out of procedures’
spec, not code. We can also ascribe the same spec to different snapshot algorithms,
without modifying client’s code or proof.

In more detail, our approach works as follows. We use shared auxiliary state
to record, as a list of timed events (e. g., writes occurring at a given time), the
logical order in which the object’s procedures are perceived to execute, each
instantaneously (Section 4.5). Tracking this time-related information through
state enables us to specify its dynamic aspects. We can use auxiliary code to
mutate the logical order in place, thereby permuting the logical sequencing of the
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1 write (p, v) {
2 p := v;

3 b← read(S);

4 if b

5 then (fwd p) := v}

fwd (p : ptr) {
return (p = x) ? fx: fy }

6 scan : (A× A) {
7 S := true;

8 fx :=⊥;

9 fy :=⊥;

10 vx ← read(x);

11 vy ← read(y);

12 S := false;

13 ox ← read(fx );

14 oy ← read(fy);

15 rx ← if (ox 6= ⊥) then ox else vx ;

16 ry ← if (oy 6= ⊥) then oy else vy ;

17 return (rx , ry)}

Figure 4.1: Jayanti’s single-scanner/single-writer snapshot algorithm.

procedures, as may be needed when some run-time event occurs (Sections 4.6
and 4.8). This mutation is similar to updating pointers to reorder a linked list,
except that it is executed over auxiliary state storing time-related data, rather
than over real state. This is why we refer to the idea as linking-in-time.

Encoding temporal information by way of representing it as mutable state
allows us to use FCSL off-the-shelf to verify example programs. In particular, FCSL
has been implemented in the proof assistant Coq, and we have fully mechanized
the proof of Jayanti’s algorithm (Delbianco et al. , 2017b).

4.2 Verification challenge and main ideas

Jayanti’s snapshot algorithm (Jayanti, 2005) provides the functionality of a shared
array of size m, operated on by two procedures: write, which stores a given
value into an element, and scan, which returns the array’s contents. We use the
single-writer/single-scanner version of the algorithm. which assumes that at most
one thread writes into an element, and at most one thread invokes the scanner, at
any given time. In other words, there is a scanner lock and m per-element locks.
A thread that wants to scan, has to acquire the scanner lock first, and a thread
that wants to write into element i has to acquire the i-th element lock. However,
scanning and writing into different elements can proceed concurrently. This is the
simplest of Jayanti’s algorithms, but it already exhibits linearization points of
dynamic nature. We also restrict the array size to m= 2 (i. e., we consider two
pointers x and y, instead of an array). This removes some tedium from verification,
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l: write (x,2);
c: scan () r: write (x,3)

write (y,1)

(a) Parallel composition of three threads l, c, r.

1 c: S := true

2 c: fx :=⊥
3 c: fy :=⊥
4 c: read(x) // vx <- 5

5 c: read(y) // vy <- 0

6 l: x := 2

7 l: read(S) // b <- true

8 l: fx := 2

9 l: return ()

10 r: x := 3

11 l: y := 1

12 l: read(S) // b <- true

13 l: fy := 1

14 l: return ()

15 c: S := false

16 r: read(S) // b <- false

17 r: return ()

18 c: read(fx) // ox <- 2

19 c: read(fy) // oy <- 1

20 c: return (2,1)

(b) A possible interleaving of the threads in (a).

Figure 4.2: An example leading to a scanner miss.

but exhibits the same conceptual challenges.

The difficulty in this snapshot algorithm is ensuring that the scanner returns
the most recent snapshot of the memory. A näıve scanner, which simply reads
x and y in succession, is unsound. To see why, consider the following scenario,
starting with x = 5, y = 0. The scanner reads x, but before it reads y, another
thread preempts it, and changes x to 2 and, subsequently, y to 1. The scanner
continues to read y, and returns x = 5, y = 1, which was never the contents of
the memory. Moreover, (x, y), changed from (5, 0) to (2, 0) to (2, 1) as a result
of distinct non-overlapping writes; thus, it is impossible to find a linearization
point for the scan because linearizability only permits reordering of overlapping
operations.

To ensure a sound snapshot, Jayanti’s algorithm internally keeps additional
forwarding pointers fx and fy , and a Boolean scanner bit S. The implementation
is given in Figure 4.11. A writer storing v into p (line 2), will additionally store v
into the forwarding pointer for p (line 5), provided S is set. If the scanner missed
the write and instead read the old value of p (lines 10–11), it will have a chance
to catch v via the forwarding pointer (lines 13–14). The scanner bit S is used by
writers (line 3) to detect a scan in progress, and forward v.

As Jayanti proves, this implementation is linearizable. Informally, every
overlapping calls to write and scan can be rearranged to appear as if they

1Following Jayanti, we simplify the presentation and omit the locking code that ensures the
single-writer/single-scanner setup. We make this locking explicit in our Coq development (Del-
bianco et al. , 2017b). It should be clarified that such a locking is intended to restrict the
number of concurrent threads calling the methods, i. e. it does not lock nor synchronize the
main memory, and thus it preserves the fine-grained nature of the algorithm.
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occurred sequentially. To illustrate, consider the program in Figure 4.2a, and
one possible interleaving of its primitive memory operations in Figure 4.2b. The
threads l, c, and r, start with x = 5, y = 0. The thread c is scheduled first, and
through lines 1–5 sets the scanner bit, clears the forwarding pointers, and reads
x = 5, y = 0. Then l intervenes, and in lines 6–9, overwrites x with 2, and seeing
S set, forwards 2 to fx . Next, r and l overlap, writing 3 into x and 1 into y.
However, while 1 gets forwarded to fy (line 13), 3 is not forwarded to fx , because
S was turned off in line 15 (i. e., the scan is no longer in progress). Hence, when
c reads the forwarded values (lines 18, 19), it returns x = 2, y = 1.

While x= 2, y= 1 was never the contents of the memory, returning this snapshot
is nevertheless justified because we can pretend that the scanner missed r’s write
of 3. Specifically, the events in Figure 4.2b can be reordered to represent the
following sequential execution:

write (x, 2); write (y, 1); scan (); write (x, 3) (4.1)

Importantly, the client programs have no means to discover that a different
scheduling actually took place in real time, because they can access the internal
state of the algorithm only via interface methods, write and scan.

This kind of temporal reordering is the most characteristic aspect of lineariz-
ability proofs, which typically describe the reordering by listing the linearization
points of each procedure. At a linearization point, the procedure’s operations can
be spliced into the execution history as an uninterrupted chunk. For example, in
Jayanti’s proof, the linearization point of scan is at line 12 in Figure 4.1, where
the scanner bit is unset. The linearization point of write, however, may vary. If
write starts before an overlapping scan’s line 12, and moreover, the scan misses
the write—note the dynamic and future-dependent nature of this property—,
then write should appear after scan; that is, the write’s linearization point is
right after scan’s linearization point at line 12. Otherwise, write’s lineariza-
tion point is at line 2. In the former case, write exactly has a non-local and
future-dependent linearization point, because the decision on the logical order of
this write depends on the execution of scan in a different thread. This decision
takes effect on lines 13–14, which can take place after the execution of write has
terminated. For instance, in Figure 4.2b the execution of write in r terminates
at step 17, yet, in Jayanti’s proof, the decision to linearize this write after the
overlapping scan is taken at line 18, when the scan reads the value from the
previous write.

Obviously, the high-level pattern of the proof requires tracking the logical
ordering of the write and scan events, which differs from their real-time ordering.
As the logical ordering is inherently dynamic, depending on properties such as
scan missing a write, we formalize it in Hoare logic, by keeping it as a list
of events in auxiliary state that can be dynamically reordered as needed. For
example, Figure 4.3 shows the situation in the execution of scan that we reviewed
above. We start with the (initializing) writes of 5 and 0 already executed, and
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(a) (b)

Figure 4.3: Changing the logical ordering (solid line ζ) of write events from (5,
0, 2, 3, 1) in (a) to (5, 0, 2, 1, 3) in (b), to reconcile with scan returning the
snapshot x = 2, y = 1, upon missing the write of 3. Dashed lines χ represent
real-time ordering.

our program performs the writes of 2, 3 and 1 in the real time order shown by
the position of the events on the dashed lines. In Figure 4.3a, the logical order ζ
coincides with real-time order, but is unsound for the snapshot x = 2, y = 1 that
scan wants to return. In that case, the auxiliary code with which we annotate
scan, will change the sequence ζ in-place, as shown in Figure 4.3b.

Our specification and verification challenge then lies in reconciling the following
requirements. First, we have to posit specs that say that write performs a write,
and scan performs a scan of the memory, with the operations executing in a single
logical moment. Second, we need to implement the event reordering discipline so
that a method call only reorders events that overlap with it; the logical order of
the past events should be preserved. This will be accomplished by introducing yet
further structures into the auxiliary state and code. Finally, the specs must hide
the specifics of the reordering discipline, which should be internal to the snapshot
object. Different snapshot implementations should be free to implement different
re-orderings, without changing the method specs.

4.3 Specification

General considerations. For the purposes of specification and proof, we
record a history of the snapshot object as a set of entries of the form t 7→ (p, v).
The entry says that at time t (a natural number), the value v was written into the
pointer p. We thus identify a write event with a single moment in time t, enabling
the specs of write and scan to present the view that write events are logically
atomic. Moreover, in the case of snapshots, we can ignore the scan events in the
histories. The latter do not modify the state in a way observable by clients who
can access the shared pointers only via interface methods write and scan.

We keep three auxiliary history variables. The history variables χ s and χ o are
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local to the specified thread, and record the terminated write events carried out
by the specified thread, and that thread’s interfering environment, respectively.
We refer to χ s as the self -history, and to χ o as the other -history (Ley-Wild &
Nanevski, 2013; Nanevski et al. , 2014a; Nanevski, 2016; Sergey et al. , 2015b).
The role of χ o is to enable the spec of write to situate the performed write event
within the larger context of past and ongoing writes, and the spec of scan to
describe how it logically reordered the writes that overlapped with it. The third
history variable χ j records the set of write events that are in progress. These are
events that have been initiated, time-stamped, and have executed their physical
write to memory, but have not terminated yet. It is an important component of
our auxiliary state design that when a write event terminates, it is moved from χ j

to the invoking thread’s χ s, to indicate the ownership of the write by the invoking
thread. We name by χ the union χ s ·∪ χ o ·∪ χ j, which is the global history of the
data structure. As common in separation logic, the union is disjoint, i. e., it is
undefined if the components contain duplicate timestamps. By the semantics of
our specs, χ is always defined, thus χ s, χ o and χ j never duplicate timestamps.

The real-time ordering of the time-stamped events is the natural numbers
ordering on the timestamps. To track the logical ordering, we need further auxiliary
notions. The first is the auxiliary variable ζ, whose type is a mathematical sequence.
The sequence ζ is a permutation of timestamps from χ showing the logical ordering
of the events in χ. We write t1 ≤ζ t2, and say that t1 is logically ordered before
t2, if t1 appears before t2 in ζ. The sequence ζ resides in joint state, and can be
dynamically modified by any thread. For example, the execution of the scanner
may reorder ζ, as shown in Figure 4.3b. Because ζ is a sequence, the order ≤ζ is
linear.

Because sequence ζ changes dynamically under interference, it is not appropri-
ate for specifications. Thus, our second auxiliary notion is the partial order Ω, a
suborder of ≤ζ that is stable in the following sense. It relates the timestamps of
events whose logical order has been determined, and will not change in the future.
Thus Ω can grow over time, to add new relations between previously unrelated
timestamps, but cannot change the old relations.

To illustrate the distinction between the two orders, we refer to Figure 4.3a.
There, ζ represents the linear order 5−0−2−3−1, which changes in Figure 4.3b to
5−0−2−1−3. Since 1 and 3 exchange places, the stable order Ω cannot initially
relate the two. Thus, in Figure 4.3a, Ω is represented by the Hasse diagram

5−0−2<
1

3
. In Figure 4.3b, the relation 1−3 is added to this partial order,

making it the linear order 5−0−2−1−3. Note how the previous relations remain
unchanged.

The third auxiliary notion is the set scanned Ω of timestamps. A write’s
timestamp is placed in scanned Ω, if that write has been observed by some scanner;
that is, the written value is returned in some snapshot, or has been rewritten
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write (p, v) : {χ s = ∅} ( )

{∃t. χ′s = t 7→ (p, v) ∧ dom(χ o) ∪ scanned Ω ⊆ Ω′

�

t}@J

scan : {χ s = ∅} (A× A)

{r.∃t. χ′s = ∅ ∧ r =eval tΩ′ χ′ ∧ dom(χ)⊆ Ω′ ↓ t ∧ t ∈ scanned Ω′}@J

Figure 4.4: Snapshot methods specification in FCSL.

by another value that is returned in some snapshot. To illustrate, in the above
example, {5, 0, 2} ⊆ scanned Ω. Intuitively, we want to model that after a write
has been observed, the ordering of the events logically preceding the write must
be stabilized, and moreover, must be a sequence. Thus, scanned Ω is a linearly
ordered subset of Ω.2 The set scanned Ω can also be seen as representing all the
scans that have already been executed. Such representation of scans allows us to
avoid tracking scan events directly in the history.

In the sequel, we concretize Ω and scanned Ω in terms of ζ and other auxiliary
state. However, we keep the notions abstract in the method specs and in client
reasoning. This enables the use of different snapshot algorithms, with the same
specs, without invalidating the client proofs. We also mention that ζ, Ω and
scanned Ω can be encoded as user-level concepts in FCSL, and require no new
logic to be developed.

Snapshot specification. Figure 4.4 presents our specs for scan and write.
These are partial correctness specs that describe how the methods change the
state from the precondition (first braces) to the postcondition (second braces),
possibly influencing the value r that the procedure returns. We use VDM-style
notation with unprimed variables for the state before, and primed variables for the
state after the method executes. We use Greek letters for state-dependent values
that can be mutated by the method, and Latin letters for immutable variables.
The component J is fine-grained resource (as defined in Chapter 3) that describes
the state space of the algorithm, i.e, the invariants on the auxiliary and real state,
and the transitions, i.e., the allowed atomic mutations of the state. For now, we
keep J abstract, but will define it in Sections 4.5 and 4.6. We denote by Ω ↓ t the
downward-closed set of timestamps Ω ↓ t = {s | s Ω t}. Let Ω

�

t = (Ω ↓ t) \ {t}.
The spec for write says the following. The precondition starts with the empty

self history χ s, indicating that the procedure has not made any writes. In the
postcondition, a new write event t 7→ (p, v) has been placed into χ′s. Thus, a
call to write wrote v into pointer p. The timestamp t is fresh, because χ′ does
not contain duplicate timestamps. Moreover, the write appears as if it occurred

2In terminology of linearizability, one may say that scanned Ω is the set of “linearized” writes.
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atomically at time t, thus capturing the logical atomicity of write.
The next conjunct, dom(χ o) ∪ scanned Ω ⊆ Ω′

�

t, positions the write t into
the context of other events. In particular, if s ∈ dom(χ o), i. e., if s finished prior
to invoking write, then s is logically ordered strictly before t. In other words,
write cannot reorder prior events that did not overlap with it. The definition of
linearizability contains a similar prohibition on reordering non-overlapping events,
but here, we capture it using a Hoare-style spec. For similar reasons, we require
that scanned Ω ⊆ Ω′

�

t. As mentioned before, scanned Ω represents all the scans
that finished prior to the call to write. Consequently, they do not overlap with
write in real time, and have to be logically ordered before t.

Notice what the spec of write does not prevent. It is possible that some event,
say with a timestamp s, finishes in real time before the call of write at time t.
Events s and t do not overlap, and hence cannot be reordered; thus s Ω t always.
However, the relationship of s with other events that ran concurrently with s,
may be fixed only later, thus supporting implementation of “future-dependent”
nature, such as Jayanti’s.

In the case of scan, we start and terminate with an empty χ s, because scan

does not create any write events, and we do not track scan events. However, when
scan returns the pair r = (rx, ry), we know that there exists a timestamp t that
describes when the scan took place. This t is the timestamp of the last write
preceding the call to scan.

The postcondition says that t is the moment in which the snapshot was logically
taken, by the conjunct r = eval t Ω′ χ′. Here, eval is a pure, specification-level
function that works as follows. First, it reorders the entire real-time post-history
χ′ according to logical post-ordering Ω′. Then, it computes and returns the values
of x and y that would result from executing the write events of such reordered
history up to the timestamp t. For example, if t is the timestamp of event 1 in
Figure 4.3b, then eval t Ω′ χ′ would return (2, 1). Hence, the conjunct says that
scan performed a scan of x and y, consistent with the ordering Ω′, and returned
the read values into r. The scan appears as if it occurred atomically, immediately
after time t, thus capturing the atomicity of scan.

The next conjunct, dom(χ) ⊆ Ω′ ↓ t, says that the scanner returned a snapshot
that is current, rather than corresponding to an outdated scan. For example,
referring to Figure 4.3, if scan is invoked after the events 2 and 1 have already
executed, then scan should not return the pair (5, 0) and have t be the timestamp
of the event 0, because that snapshot is outdated. Specifically, the conjunct
says that the write events from χ are ordered no later than t, similar to the
postcondition of write. However, while in write we constrained the events from
dom(χ o) ∪ scanned Ω, here we constrain the full global history χ = χ o ·∪ χ j. The
addition of χ j shows that the scanner will observe and order all of the write events
that have been time-stamped and recorded in χ j (and thus, that have written
their value to memory), prior to the invocation of scan.

Lastly, the conjunct t ∈ scanned Ω′ explicitly says that t has been observed by
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the just finished call to scan.
Again, it is important what the spec does not prevent. It is possible that the

timestamp t identified as the moment of the scan, corresponds to a write that has
been initiated, but has not yet terminated. Despite being ongoing, t is placed into
scanned Ω′ (i. e., t is “linearized”). Also, notice that the postcondition of scan

actually specifies the “linearization” order of events that are initiated by another
method, namely write, thus supporting implementations of “non-local” nature,
such as Jayanti’s.

We close the section with a brief discussion of how the specs are used. Because
J , Ω and scanned are abstracted from the clients, we need to provide an interface
to work with them. The interface consists of a number of properties showing how
various assertions interact, summarized in the statements below.

The first statement presents the invariants on the transitions of J , often
referred to as 2-state invariants. Another way of working with such invariants is
to include them in the postcondition of every method.3 For simplicity, here we
agglomerate the properties, and use them implicitly in proofs as needed.

Invariant 4.1 (Transition invariants). In any program respecting the transitions
of J , the following properties hold:

1. χ ⊆ χ′, χ s ⊆ χ′s, and χ o ⊆ χ′o.

2. Ω ⊆ Ω′ and scanned Ω ⊆ scanned Ω′.

3. For every s ∈ scanned Ω, Ω ↓ s = Ω′ ↓ s.

Invariant 4.1.1 says that histories only grow, but does not insist that χ j ⊆ χ′j,
as timestamps can be removed from χ j and transferred to χ s. Invariant 4.1.2 states
that Ω is monotonic, and the same applies for scanned Ω. This is a fundamental
stability requirement for our system: no transition from J can change the relations
between write events in Ω and, moreover, write events which have been observed by
the scanner— and thus are in scanned Ω— cannot be unobserved. Invariant 4.1.3
says that if a new event is added to increase Ω to Ω′, that event appears logically
later than any s ∈ scanned Ω. In other words, once events are observed by a
scanner, and placed into scanned Ω in a certain order, we cannot insert new events
among them to modify the past observation.

The second statement exposes the properties of Ω, scanned , and eval that are
used for client reasoning:

Invariant 4.2 (Relating scanned and snapshots). The set scanned Ω satisfies the
following properties:

1. if t1 ∈ scanned Ω and t2 ∈ scanned Ω, then t1 Ω t2 ∨ t2 Ω t1 (linearity).

3In fact, this is what we currently do in our Coq files.

117



118 4.4. Client reasoning

2. if t2 ∈ scanned Ω and t1 Ω t2, then t1 ∈ scanned Ω (downward closure).

3. if t ∈ scanned Ω, χ ⊆ χ′, Ω ⊆ Ω′, scanned Ω ⊆ scanned Ω′, and Ω ↓ t = Ω′ ↓ t
then eval tΩχ = eval tΩ′ χ′. (snapshot preservation).

The first two properties merely state that the subset scanned Ω is totally-
ordered (4.2.1) and also downward closed (4.2.1). The last property is the most
interesting: it entails that once a snapshot is observed by scan, its validity will not
be compromised by future or ongoing calls to write. Thus, snapshots returned
from previous calls to scan are still valid and observable in the future.

4.4 Client reasoning

Comparison with linearizability specifications. In linearizability one
would specify write and scan by relating them, via a simulation argument, to
sequential programs for writing and scanning, respectively. On the face of it,
such specs are indeed simpler than ours above, as they merely state that write

writes and scan scans. Our specs capture this property with one conjunct in
each postcondition. The remainders of the postconditions describe the relative
order of the atomic events, observed by threads, including explicit prohibition
on reordering non-overlapping events, which is itself inherent in the definition of
linearizability.

However, the additional specifications are not pointless, and they become
useful when it comes to reasoning about clients. Linearizability tells us that we
can simplify a fine-grained client program by replacing the occurrences of write
and scan with the atomic and sequential equivalents, thus turning the client into
an equivalent coarse-grained concurrent program. However, linearizability is not
directly concerned with verifying that coarse-grained equivalent itself. Then, if
one is interested in proving client properties which involve timing and/or ordering
properties of such events, it is likely that the simple sequential spec described
above do not suffice, and extra auxiliary state is still required.

On the other hand, if one wants to reason about such clients using a Hoare
logic, then our specs are immediately useful. Moreover, in our setting, client
reasoning depends solely on the API for scan and write, regardless of the different
linearizations of a program. In the sequel, we illustrate this claim by deriving
interesting client timing properties out of the specs of write and scan.

Moreover, because we use separation logic, our approach easily supports
reasoning about programs with a dynamic number of threads, and about programs
that transfer state ownership. In fact, as we already commented in Section 4.3,
our proofs rely on transferring write events from χ j (joint ownership) to χ s

(private ownership), upon write’s termination. This is immediate in FCSL,
as reasoning about histories inherits the infrastructure of the ordinary heap-
based separation logic, such as framing and, in this case, ownership transfer. In
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contrast, Linearizability is usually considered for a fixed number of threads, and
its relationship with ownership transfer is more subtle (Gotsman & Yang, 2012;
Cerone et al. , 2014).

An additional benefit of specifying the event orders by Hoare triples at the
user level, is that one can freely combine methods with different event-ordering
properties, that need not respect the constraints of linearizability (Sergey et al. ,
2016).

Example clients. We first consider the client e, defined as follows:

do

(
write (x, 2);

write (y, 1)
scan () write (x, 3)

)

It is our running example from Figure 4.2a, implemented no in FCSL notation.
Thus, we use the command do to acribe the specification below. In the rest of
this Chapter, we will omit the concurrent resource J , as it never changes.

e : {χ s = ∅} (nat× nat)

{r.∃t1 t2 t3 ts. χ′s = t1 7→ (y, 1) ·∪ t2 7→ (x, 2) ·∪ t3 7→ (x, 3)

∧ dom(χ) ⊆ Ω′ ↓ ts ∧ dom(χ o) ⊆ Ω′

�

t2,Ω
′ � t3

∧ t2 Ω′ t1 ∧ r = eval ts Ω′ χ′}

The spec of e states that (1) write (x, 2), timestamped t2, occurs sequentially
before write (y, 1) which is timestamped t1, (2) the remaining write, timestamped
t3, and the scan, timestamped ts, are not temporally constrained, and (3) the
writes that terminated before the client started are ordered before t2 (and thus
before t1), t3 and ts. The example illustrates how to track timestamps and their
order, but does not utilize the properties of scanned Ω. We illustrate the latter in
another example at the end of this section.

We will show that e satisfies the specification given above. We will first split
the composition, and proceed to verify the following subprograms separately:

scan () ‖ write (x, 3) and write (x, 2); write (y, 1)

Then, we will combine them in order to obtain the full proof for e. As proof
outlines show intermediate states, in addition to pre- and post-states, we cannot
quite utilize VDM notation in them. As a workaround, we explicitly introduce
logical variables h and ho to name (subsets of) the initial global and other history.
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1 {χ s = ∅ ∧ h ⊆ χ ∧ ho ⊆ χ o}

2a {χ s = ∅ ∧ h ⊆ χ ∧ ho ⊆ χ o}
3a scan ()

4a {r. ∃ ts. χ s = ∅ ∧ dom(h) ⊆ Ω ↓ ts
∧ r = eval ts Ωχ}

2b {χ s = ∅ ∧ h ⊆ χ ∧ ho ⊆ χ o}
3b write (x, 3)

4b {∃ t3. χ s = t3 7→ (x, 3)

∧ dom(ho) ⊆ Ω

�

t3}

5
{r. ∃t3 ts. χ s = t3 7→ (x, 3) ∧ dom(ho) ⊆ Ω

�
t3

∧ dom(h) ⊆ Ω ↓ ts ∧ r = eval ts Ω χ}

The proof applies the rule PAR for parallel composition of FCSL (Figure 3.5).
We have already described this rule in Section 3.1. Here, we just mention that,
upon forking, the rule distributes the value of χ s of the parent thread, to the χ s

values of its children; in this case, all these are ∅. Dually, upon joining, the χ s

values of the children in lines 4a and 4b, are collected, in line 5, into that of the
parent. The other assertions in 4a and 4b directly follow from the specs of scan
and write and the Invariants 4.1.1 and 4.1.2, and directly transfer to line 5.
While the proof outline does not establish how scan and write interleaved, it
does however establish the fact that t3 and ts both appear after any write event
prior to the call to the client.

1 {χ s = ∅ ∧ h ⊆ χ ∧ ho ⊆ χ o}
2 write (x, 2);

3 {∃ t2. χ s = t2 7→ (x, 2) ∧ dom(ho) ⊆ Ω

�

t2}
4 write (y, 1)

5 {∃ t1 t2. χ s = t1 7→ (y, 1) ·∪ t2 7→ (x, 2) ∧ dom(ho) ⊆ Ω

�

t2 ∧ t2 Ω t1}

The second proof outline starts with the same precondition. Then, line 3
follows directly from the spec of write, using ho ⊆ χ o. To proceed, we need to
apply FCSL’s framing : the precondition of write mandates an empty self-history
χ s = ∅, but we have χ s = t2 7→ (x, 2).

The frame rule was introduced in Chapter 3. For the purpose of the proof
at hand, the frame rule allows us to generalize the specifications of write and
scan from Figure 4.4. In that figure, both procedures start with the precondition
that χ s = ∅. But what do we do if the procedures are invoked by another one
which has already completed a number of writes, and thus its χ s is non-empty?
By ~-ing with the frame predicate R =̂ (χ s = k), the frame rule allows us to
generalize these specs into ones where the input history equals an arbitrary k:

write (p, v) : {χ s = k} ( )

{∃t. χ′s = h ·∪ t 7→ (p, v) ∧ dom(χ o) ∪ scanned Ω ⊆ Ω′

�

t}
scan : {χ s = k} (nat× nat)

{r.∃t. χ′s = k ∧ r =eval tΩ′ χ′ ∧ dom(χ) ⊆ Ω′ ↓ t ∧ t ∈ scanned Ω′}
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Thus, framing alllows us to modify the spec of write by joining t2 7→ (x, 2) to
χ s, χ

′
s and χ o as follows.

write (p, v) : {χ s = t2 7→ (x, 2)} ( )

{∃t. χ′s = t 7→ (p, v) ·∪ t2 7→ (x, 2)

∧ dom(χ o ·∪ t2 7→ (x, 2)) ∪ scanned Ω ⊆ Ω′

�

t}

Such a framed spec for write gives us that after line 4: (1) χ s = t1 7→
(y, 1) ·∪ t2 7→ (x, 2), and (2) dom(ho ·∪ t2 7→ (x, 2)) ⊆ Ω

�
t1. From Invariants 4.1,

we also obtain that (3) dom(ho) ⊆ Ω

�

t2, which simply transfers from line 3.
Now, in the presence of (2), we can simplify (3) into t2 Ω t1, thus obtaining the
postcondition in line 5.

The final step applies the rule for parallel composition to the two derivations,
splitting χ s upon forking, and collecting it upon joining:

e : {χ s = ∅ ∧ h ⊆ χ ∧ ho ⊆ χ o} (nat× nat)

{r.∃ t1 t2 t3 ts. χ s = t1 7→ (y, 1) ·∪ t2 7→ (x, 2) ·∪ t3 7→ (x, 3) ∧ dom(h) ⊆ Ω ↓ ts
∧ dom(ho) ⊆ Ω

�

t2,Ω

�

t3 ∧ t2 Ω t1 ∧ r = eval ts Ωχ}

From here, the VDM spec of e is derived by priming the Greek letters in the
postcondition, and choosing h = χ and ho = χ o.

The spec of e can be further used in various contexts. For example, to recover
the context from Section 4.2, where e is invoked with x = 5, y = 0, we can
frame e wrt. χ s = t5 7→ (x, 5) ·∪ t0 7→ (y, 0) to make explicit the events that
initialize x and y. Then, it is possible to derive in FCSL that if e executes without
interference (i. e., if χ = χ o = χ′ = χ′o = ∅), then the result at the end must be
r ∈ {(5, 0), (2, 0), (3, 0), (2, 1), (3, 1)}. As expected, r 6= (5, 1), because the write
of 2 sequentially precedes the write of 1.

We next illustrate the use of Invariants 4.2, which are required for clients that
use scan in sequential composition. We consider the program

e′ = do (r ← scan; write (x, v); return r)

and prove that e′ can be ascribed the following spec:

e′ : {χ s = ∅} (nat× nat)

{∃ ts tx. χ′s = tx 7→ (x, v) ∧ ts ∈ Ω′

�

tx ∧ r = eval ts Ω′ χ′}

The spec says that the write event (tx) is subsequent to the scan (ts), as one
would expect. In particular, the snapshot r remains valid, i. e., the write does
not change the order Ω and history χ in a way that makes r cease to be a valid
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snapshot in Ω′ and χ′. The proof outline follows, with the explanation of the
critical steps.

1 {χ s = ∅}
2 r ← scan;

3 {∃ ts, w′(= Ω), h′(= χ). χ s = ∅ ∧ ts ∈ scannedw′ ∧ r = eval ts w
′ h′}

4 write (x, v);

5 {∃ ts tx. χ s = tx 7→ (x, v) ∧ ts ∈ Ω

�

tx ∧ ts ∈ scanned Ω ∧ r = eval ts Ω χ}
6 return r

Line 3 is a direct consequence of the spec of scan, where we omitted the
conjunct dom(χ) ⊆ Ω′ ↓ ts, as we do not need it for the subsequent derivation.
We also introduce explicit names w′ and h′ for the current values of Ω and χ.
Now, to derive line 5, by the spec of write, we know there exists a timestamp tx
corresponding to the write, such that (1) χ s = tx 7→ (x, v), which is a conjunct in
line 5, and also (2) dom(χ o)∪scannedw′ ⊆ Ω

�

tx. Furthermore, (3) ts ∈ scannedw′,
and (4) r = eval ts w

′ h′, simply transfer from line 3. From (2) and (3), we infer
that ts ∈ Ω

�

tx. To complete the derivation of line 5, it remains to show that
ts ∈ scanned Ω and r = eval ts Ω χ. For this, we use (3), (4) and the Invariants 4.1
and 4.2, as follows. First, by Invariant 4.1.3, and because ts ∈ scannedw′, we
get w′ ↓ ts = Ω ↓ ts. By Invariant 4.1.2, this gives us ts ∈ scanned Ω as well. By
Invariant 4.1.1, h′ ⊆ χ, and then by Invariant 4.2.3, r = eval ts w

′ h′ = eval ts Ω χ,
completing the deduction of line 5.

Observe that the main role of scanned in proofs is to enable showing stability
of values obtained by eval, using Invariant 4.2.3. The remaining Invariants 4.2.1
and 4.2.2 allow us to replace a number of conjuncts about scanned by a single one
that expresses the membership of the largest timestamp in the current scanned
set.

4.5 Internal auxiliary state

In order to verify the implementations of write and scan, we require further
auxiliary state that does not feature in the specifications, and is thus hidden from
the clients.

First, we track the point of execution in which write and scan are, but
instead of line numbers, we use datatypes to encode extra information in the
constructors. For example, the scanner’s state is a triple (Ss, Sx, Sy). Ss is drawn
from {SOn, SOff t}. If SOn, then the scanner is in lines 7–11 in Figure 4.1. If SOff t,
the the scanner reached line 12 at “time” t, and is now in 13–17. Sx is a Boolean
bit, set when the scanner clears fx in line 8, and reset upon scanner’s termination
(dually for Sy and fy). Writers’ state for x is tracked by the auxiliary Wx (dually,
Wy). These are drawn from {WOff ,New t v,Fwd t v,Done t v}, where t marks the
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beginning of the write and v is the value written to pointer p. If WOff , then no
write is in progress. If New t v, then the writer is in line 2. If Fwd t v, then b has
been set in line 3, triggering forwarding. If Done t v, the writer is free to exit.

Second, like in linearizability, we record the ending times of terminated events,
using an auxiliary variable τ . τ is a function that takes a timestamp identifying
the beginning of some event, and returns the ending time of that event, and is
undefined if the event has not terminated. However, we do not generate fresh
timestamps to mark event ending times. Instead, at the end of write, we simply
read off the last used timestamp in χ, and use it as the ending time of write.
This is a somewhat non-standard way of keeping time, but it suffices to prove
that events t1 and t2 which are non-overlapping (i. e., τ(t1) < t2 or τ(t2) < t1)
are never reordered. The latter is required by the postconditions of write and
scan, as we discussed in Section 4.3. Formally, the following is an invariant of
the snapshot object; i. e., one of the properties that define the the state space
CohJ of the fine-grained resource J from Figure 4.4, preserved by J ’s transition.

Invariant 4.3. The logical order <ζ preserves the real time order of non-overlap-
ping events: ∀t1 ∈ dom(τ), t2 ∈ dom(χ), if τ(t1) < t2 then t1 <ζ t2.

Third, we track the rearrangement status of write events wrt. an ongoing
active scan, by colours. A scan is active if it has cleared the forwarding pointers
in lines 8 and 9, and is ready to read x and y. We keep the auxiliary variable κ,
which is a function mapping each timestamp in χ to a colour, as follows.

• Green timestamps identify write events whose position in the logical order
is fixed in the following sense: if κ(t1) = green and t1 <ζ t2, then t1 <ζ′ t2
for every ζ ′ to which ζ may step by auxiliary code execution (Section 4.6).
For example, since we only reorder overlapping events, and only the scanner
reorders events, every event that finished before the active scan started will
be green. Also, a green timestamp never changes its colour.

• Red timestamps identify events whose order is not fixed, but which will not
be manipulated by the active scan, and are left for the next scan.

• Yellow timestamps identify events whose order is not fixed yet, but which
may be manipulated by the ongoing active scan, as follows. The scan
can push a yellow timestamp in logical time, past another green or yellow
timestamp, but not past a red one. This is the only way the logical ordering
can be modified.

There are a number of invariants that relate colours and timestamps. We next
list the ones that are most important for understanding our proof. We use χp
to denote the sequence of writes into the pointer p that appear in the history χ,
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sorted by their order in ζ4.

Invariant 4.4 (Colors). The colours of χp are described by the regular expression
g+y?r∗: there is a non-empty prefix of green timestamps, followed by at most one
yellow, and arbitrary number of reds.

By the above invariant, the yellow colour identifies the write event into the
pointer p, that is the unique candidate for reordering by the ongoing active scan.
Moreover, all the writes into p prior to the yellow write, will have already been
coloured green (and thus, fixed in time), whether they overlapped with the scanner
or not.

Invariant 4.5 (Color of forwarded values). Let Ss = SOff toff , and p ∈ {x, y}, and
Sp = True (i. e., scanner is in lines 13–16), and v 6= ⊥ has been forwarded to p;
i. e., fwd p 7→ v. Then the event of writing v into p is in the history, i. e., there
exists t such that t 7→ (p, v) ∈ χp. Moreover, t is the last green, or the yellow
timestamp in χp.

The above invariant restricts the set of events that could have forwarded a
value to the scanner, to only two: the event with the (unique) yellow timestamp,
or the one corresponding to the last green timestamp. By Invariant 4.4, these two
timestamps are consecutive in χp.

Invariant 4.6 (Red zone). If Ss = SOff toff , Sx = True, Sy = True, then χ satisfies
the (g|y)+r∗ pattern. Moreover, for every t ∈ dom(χ):

• κ(t) = green =⇒ t ≤ toff

• κ(t) = yellow =⇒ t ≤ toff ≤ τ(t)

• κ(t) = red =⇒ toff < t

This invariant restricts the global history χ (not the pointer-wise projections
χp). First, the red events in χ are consecutive, and cannot be interspersed among
green and yellow events. Thus, when a scanner pushes a yellow event past a green
event, or past another yellow event, it will not “jump over” any reds. Second, the
invariant relates the colours to the time toff at which the scanner was turned off
(in line 12, Figure 4.1). This moment is important for the algorithm; e. g., it is
the linearization point for scan in Jayanti’s proof (Jayanti, 2005). We will use the
above inequalities wrt. toff in our proofs, to establish that the events reordered by
the scanner do overlap, as per Invariant 4.3.

We can now define the stable logical order Ω, and the set scanned Ω, using the
internal auxiliary state of colours and ending times.

4For reasoning purposes, it serves us better to think of χp as sub-histories, with an external
ordering given by ζ. We do, however, implement χp as a list filter: χp = filter (λ t. t 7→ (p, ) ∈
χ) ζ.
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Definition 4.7 (Logical order Ω and scanned Ω). We define the stable order Ω,
and the scanned Ω assertion as follows:

1. t1 Ω t2 =̂ (t1 = t2) ∨ (τ(t1) < t2) ∨ (t1 <ζ t2 ∧ κ(t1) = green)

2. scanned Ω = {t | Ω ↓ t = ≤ζ ↓ t ∧ ∀s ∈ Ω ↓ t. κ(s) = green}.

From the definition of Ω, notice that t1 Ω t2 is stable (i. e., invariant under
interference), since threads do not change the ending times τ , the colour of green
events, or the order of green events in <ζ , as we already discussed. From the
definition of scanned Ω, notice that for every t ∈ scanned Ω, it must be that Ω ↓ t
is a linearly-ordered set wrt. Ω, because it equals a prefix of the sequence ζ.

We close this section with a few technical invariants that we use in the sequel.

Invariant 4.8 (Last write). Let pointer p ∈ {x, y}, and lastζ χp be the timestamp
in χp that is largest wrt. the logical order ≤ζ . Then the contents of p equals the
value written by the event associated with lastζ χp. That is, p 7→ χp(lastζχp).

Invariant 4.9 (Joint history). Let pointer p ∈ {x, y}. If the writer for p is active
i. e. Wp 6= WOff , then the write event that it is performing is time-stamped and
placed into joint history χ j. Dually, if t ∈ dom(χ j), then the event t is performed
by the active writer for p:

t 7→ (p, v) ∈ χ j ⇐⇒ Wp = New t v ∨Wp = Fwd t v ∨Wp = Done t v

Invariant 4.10 (Terminated events). Histories χ o and χ s store only terminated
events, i. e., events whose ending times are recorded in τ . Moreover, the co-domain
of τ is bounded by the maximal timestamp, in real time, in dom(χ):

1. dom(τ) = dom(χ s) ·∪ dom(χ o).

2. ∀a ∈ dom(τ). τ(a) ≤ max (dom(χ)).

Lemma 4.11 (Green/yellow read values). Let p ∈ {x, y}. If the scanner state is
Ss = SOn, Sp = True, i. e., the scanner is between lines 10–11 in Figure 4.1, and
p 7→ v in the physical heap, then exists t such that t 7→ (p, v) ∈ χp. Moreover, t is
the last green or the yellow timestamp in χp.

Lemma 4.12 (Chain). If t∈ dom(χ) and κ(≤ζ ↓ t) = green, then Ω ↓ t = ≤ζ ↓ t.

.
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1 write (p, v) {
2 〈 p := v; register(p, v)〉;
3 〈 b← read(S); check(p, b)〉;
4 if b

5 then 〈 fwd p := v; forward(p)〉;
5’ 〈 finalize(p)〉}

6 scan() : (A× A) {
7 〈S := true; set(true)〉;
8 〈 fx :=⊥; clear(x)〉;
9 〈 fy :=⊥; clear(y)〉;

10 vx ← 〈read(x)〉;
11 vy ← 〈read(y)〉;
12 〈S := false; set(false)〉;
13 ox ← 〈read(fx )〉;
14 oy ← 〈read(fy)〉;
15 rx ← if (ox 6= ⊥) then ox else vx ;

16 ry ← if (oy 6= ⊥) then oy else vy ;

17 〈 relink(rx , ry); ret (rx , ry) 〉}

Figure 4.5: Snapshot procedures annotated with auxiliary code.

4.6 Auxiliary code implementation

Figure 4.5 annotates Jayanti’s procedures with auxiliary code (typed in italic),
with 〈angle braces〉 denoting that the enclosed real and auxiliary code execute
simultaneously (i. e., atomically). The auxiliary code builds the histories, evolves
the sequence ζ, and updates the colour of various write events, while respecting
the invariants from Section 4.3. Thus, it is the constructive component of our
proofs. Each atomic command in Figure 4.5 represents one transition of the STS
C from Figure 4.4.

The auxiliary code is divided into several procedures, all of which are sequences
of reads followed by updates to auxiliary variables. We present them as Hoare
triples in Figure 4.6, with the unmentioned state considered unchanged. The
bracketed variables preceding the triples (e. g., [t, v]) are logical variables used
to show how the pre-state value of some auxiliary changes in the post-state. To
symbolize that these triples define an atomic command, rather than merely stating
the command’s properties, we enclose the pre- and postcondition in angle brackets
〈−〉.

4.6.1 Auxiliary code for write.

In line 2, register(p, v) creates the write event for the assignment of v to p. It
allocates a fresh timestamp t, inserts the entry t 7→ (p, v) into χ j, and adds t
to the end of ζ, thus registering t as the currently latest write event. The fresh
timestamp t is computed out of the history χ; we take the largest natural number
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register(p, v) : 〈Wp = WOff〉
〈ζ ′ = snoc ζ t, χ′j = χ j ·∪ t 7→ (p, v), W ′p = New t v,

κ′ = if (Ss = SOn)&Sp then κ[t 7→ yellow] else κ[t 7→ red]〉
where t = fresh χ = max (dom(χ)) + 1

check (p, b) : [t, v]. 〈Wp = New t v〉 〈W ′p = if b then Fwd t v else Done t v〉

forward (p) : [t, v]. 〈Wp = Fwd t v〉
〈W ′p = Done t v, κ′ = if (Ss = SOn)&Sp then κ[t 7→ green] else κ〉

finalize(p) : [t, v]. 〈Wp = Done t v, t 7→ (p, v) ∈ χ j〉
〈W ′p = WOff , χ

′
s = χ s ·∪ t 7→ (p, v),

χ′j = χ j \ {t}, τ ′= τ ·∪t 7→ max (dom(χ))〉

set(b) : 〈Ss = if b then SOff ( ) else SOn, Sx = ¬ b, Sy = ¬ b〉
〈S′s = if b then SOn else SOff (last χ), S′x = ¬ b, S′y = ¬ b〉

clear(p) : 〈Ss = SOn, Sp = False〉
〈S′s = SOn, S

′
p = True, κ′ = κ[χp 7→ green]〉

relink(rx, ry) : [tx, ty]. 〈Ss = SOff( ), tx 7→ (x, rx), ty 7→ (y, ry) ∈ χ, Sx = Sy = True,

∀p ∈ {x, y}. lastGY p tp〉
〈S′s = Ss, S

′
x = S′y = False, κ′ = κ[tx, ty 7→ green],

ζ ′ = if (d = Yes x s) then push s ty ζ

else if (d = Yes y s) then push s tx ζ else ζ〉
where d = inspect tx ty ζ κ

Figure 4.6: Auxiliary procedures for write and scan. Bracketed variables (e. g.,
[t, v]) are logical variables that scope over precondition and postcondition.

occurring as a timestamp in χ, and increment it by 1. The variable Wp updates
the writer’s state to indicate that the writer finished line 2 with the timestamp t
allocated, and the value v written into p. The col-or of t is set to yellow (i. e., the
order of t is left undetermined), but only if (Ss = SOn)&Sp (i. e., an active scanner
is in line 10). Otherwise, t is coloured red, indicating that the order of t will be
determined by a future scan.

In line 3, check(p, b), depending on b, sets the writer state to Fwd, indicating
that a scan is in progress, and the writer should forward, or to Done, indicating
that the writer is ready to terminate.

In line 5, forward colours the allocated timestamp t green, if an active scanner
has passed lines 8–9 and is yet to reach line 12, because such a scanner will
definitely see the write, either by reading the original value in lines 10–11, or by
reading the forwarded value in lines 13–14. Thus, the logical order of t becomes
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fixed. In fact, it is possible to derive from the invariants in Section 4.3, that this
order is the same one t was assigned at registration, i. e., the linearization point
of this write is line 2.

In line 5’, finalize moves the write event t from the joint history χ j to the
thread’s self history χ s, thus acknowledging that t has terminated. The currently
largest timestamp of χ is recorded in τ as t’s ending time. By definition of Ω, all
the writes that terminated before t in real time, will be ordered before t in Ω.

4.6.2 Auxiliary code for scan.

The method set toggles the scanner state Ss on and off. When executed in line 12,
it returns the timestamp toff that is currently maximal in real time, as the moment
when the scanner is turned off. Note that this does not create a fresh timestamp,
but rather selects that of the last write event in χ.

The procedure clear(p) is executed in lines 8–9 simultaneously with clearing
the forwarding pointer for p. In addition to recording that the scanner passed
lines 8 or respectively 9, by setting the Sp bit, it colours the sub-history χp green.
Thus, by definition of scanned Ω, the ongoing one and all previous writes to p are
recorded as scanned, and thus linearized.

Finally, the key auxiliary procedure of our approach is relink. It is executed at
line 17 just before the scanner returns the pair (rx, ry). Its task is to modify the
logical order of the writes, to make (rx, ry) appear as a valid snapshot. This will
always be possible under the precondition of relink that the timestamps tx, ty of
the events that wrote rx, ry respectively, are either the last green or the yellow ones
in the respective histories χx and χy, and relink will consider all four cases. This
precondition holds after line 16 in Figure 4.5, as one can prove from Invariants 4.4
and 4.5. In the precondition we introduce the following abbreviation:

lastGY p t =̂ t = last greenζ χp ∨ κ(t) = yellow (4.2)

Relink uses two helper procedures inspect and push, to change the logical order.
Inspect decides if the selected tx and ty determine a valid snapshot, and push
performs the actual reordering. The snapshot determined by tx and ty is valid if
there is no event s such that tx <ζ s <ζ ty and s is a write to x (or, symmetrically
ty <ζ s <ζ tx, and s is a write to y). If such s exists, inspect returns Yes x s (or
Yes y s in the symmetric case). The reordering is completed by push, which moves
s right after ty (after tx in the symmetric case) in ≤ζ . Finally, relink colours tx
and ty green, to fix them in Ω. We can then prove that (rx, ry) is a valid snapshot
wrt. Ω, and remains so under interference. Notice that the timestamp s returned
by inspect is always uniquely determined, and yellow. Indeed, since tx and ty
are not red, no timestamp between them can be red either (Invariant 4.6). If
tx <ζ s <ζ ty and s is a write to x (and the other case is symmetric), then tx must
be the last green in χx, forcing s to be the unique yellow timestamp in χx, by
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Invariant 4.4.
To illustrate, in Figure 4.3a we have rx = 2, ry = 1, tx and ty are both the

last green timestamp of χx and χy, respectively, and tx <ζ ty. However, there
is a yellow timestamp s in χx coming after tx, encoding a write of 3. Because
tx <ζ s <ζ ty, the pair (rx, ry) is not a valid snapshot, thus inspect returns Yes x s,
after which push moves 3 after 1.

We have omitted the definitions of inspect and push for the time being. These
are presented as an aside (Section 4.7). Rather, we prefer to bring forwards at
this point the main properties of relink, whose proofs can be found in our Coq
files (Delbianco et al. , 2017b).

Lemma 4.13 (Main property of relink). Let the precondition of relink hold,
i. e., Ss = SOff( ), tx 7→ (x, rx), ty 7→ (y, ry) ∈ χ, Sx = Sy = True, and ∀p ∈
{x, y}. lastGY p tp. Then the ending state of relink satisfies the following:

1. For all p ∈ {x, y}, tp = last greenζ′ χ
′
p.

2. Let t = maxζ′(tx, ty). Then for every s ≤ζ′ t, κ′(s) = green.

4.7 Aside: Auxiliary definitions for relink

In Section 4.6, we described briefly the implementation of relink, without giving
much details on the auxiliary helper functions inspect and push. We give here
their definitions, together with some associated properties:

Definition 4.14 (inspect). Given two timestamps tx, ty then inspect tx ty ζ κ is
defined as follows:

inspect tx ty κ =̂



Yes x tz if tx <ζ ty, tx = last greenζ χx,

tz = yellow timestampζ χx, and tz <ζ ty

Yes y tz if ty <ζ tx, ty = last greenζ χy,

tz = yellow timestampζ χy, and tz <ζ tx

No otherwise

Definition 4.15 (push). push is a surgery operation defined on ζ as follows:

Let ζ = ζ<i
++ i ++ ζi..j ++ j ++ ζ>j

, then push i j ζ = ζ<i
++ ζi..j ++ j ++ i ++ζ>j

The definition of inspect works under the assumption that tx and ty are,
respectively, the last green or yellow timestamp in χx and χy. This latter fact
is recovered in the definition of relink in Figure 4.6 and reinforced in line 21 in
the proof of scan in Figure 4.8. When inspect returns Yes p tz, ζ

′ is computed by
pushing some i timestamp past another timestamp j in ζ. The definition of push
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above shows that this operation is an algebraic manipulation on sequences. In
fact, we implement it using standard surgery operations on lists: ++, take, etc..

In Section 4.6, we have mentioned that the correctness aspect of auxiliary
code involves proving that the code preserves the auxiliary state invariants from
Section 4.5. For example, the correctness proof of relink, relies on the following
helper lemmas. The first lemma asserts that inspect correctly determines the
“offending” timestamp; the second and the third lemma assert that push modifies
ζ in a way that allows us to prove (in Section 4.8), that the pair (rx, ry) a valid
snapshot.

Lemma 4.16 (Correctness of inspect). If tx, ty are timestamps for write events of
rx, ry, then inspect tx ty ζ κ correctly determines that (rx, ry) is a valid snapshot
under ordering <ζ and colours κ, or otherwise returns the “offending” timestamp.
More formally, if Ss = SOff toff , Sx = True, Sy = True, and for each p ∈ {x, y},
tp 7→ (p, rp) ∈ χ and lastGY p tp, the following are exhaustive possibilities.

1. If tx <ζ ty and κ(tx) = yellow, then inspect tx ty ζ κ = No. Symmetrically
for ty <ζ tx.

2. If tx <ζ ty, tx = last green χx, and ∀s ∈ χx. tx <ζ s =⇒ ty <ζ s, then
inspect tx ty ζ κ = No. Symmetrically for ty <ζ tx.

3. If tx <ζ ty, tx = last green χx, s ∈ χx, and tx <ζ s <ζ ty, it follows that
inspect tx tyζκ = Yes x s and κ(s) = yellow. Symmetrically for ty <ζ tx.

Lemma 4.17 (Push Mono). Given elements a, b, i, j, all in ζ, and ζ ′ = push i j ζ,
then:

1. If a <ζ i then a <ζ b =⇒ a <′ζ b.

2. If j <ζ b then a <ζ b =⇒ a <′ζ b.

3. If a 6= i then a <ζ b =⇒ a <′ζ b

Lemma 4.18 (Correctness of push). Given Ss = SOff toff , Sx = Sy = True, and for
p ∈ {x, y}, we have tp 7→ (p, rp) ∈ χ, lastGY p tp, and inspect tx ty ζ κ = Yes p ts.
If we name tz ∈ {tx, ty}, with p 6= z, and ζ ′ = push ts tz ζ, then:

1. relink satisfies the 2-state invariants from Invariant 4.1.

2. χ′, ζ ′, τ ′, κ′ satisfies all the resource invariants from Section 4.5, i. e. Invari-
ants 4.3–4.10.

In our mechanization, these three lemmas allow us to prove Lemma 4.13,
relink’s main property.
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1 {χ s = ∅ ∧ w ⊆ Ω ∧ h ⊆ χ ∧ ho ⊆ χ o}
2 {χ s = ∅ ∧Wp = WOff ∧ w ⊆ Ω ∧ h ⊆ χ ∧ ho ⊆ χ o}
3 〈 p := v; register(v)〉;
4 {∃t . χ s = ∅ ∧Wp = New t v ∧ t 7→ (p, v) ∈ χ j ∧

dom(ho) ∪ scannedw ⊆ Ω

�

t}
5 〈 b← read(S); check(p, b)〉;
6 {∃t. χ s = ∅ ∧Wp = if b then Fwd t v else Done t v ∧ t 7→ (p, v) ∈ χ j ∧

dom(ho) ∪ scannedw ⊆ Ω

�

t}
7 if b then 〈 fwd p := v; forward(p, v)〉;
8 {∃t. χ s = ∅ ∧Wp = Done t v ∧ t 7→ (p, v) ∈ χ j ∧

dom(ho) ∪ scannedw ⊆ Ω

�

t}
9 〈 finalize(i, v)〉

10 {∃t. χ s = t 7→ (p, v) ∧ dom(ho) ∪ scannedw ⊆ Ω

�

t}

Figure 4.7: Proof outline for write.

4.8 Correctness

We can now show that write and scan satisfy the specifications from Figure 4.4.
As before, we avoid VDM notation in proof outlines by using logical variables.

Proof outline for write The proof outline for write is presented in Fig-
ure 4.7. Line 1 introduces logical variables w, h and ho, which name the initial
values of Ω, χ, and χ o. Line 2 adds the knowledge that the writer for the pointer
p is turned off (Wp = WOff). This follows from our implicit assumption that there
is only one writer in the system, which, in the Coq code, we enforce by locks.

Line 3 is the first command of the program, and the most important step of
the proof. Here register allocates a fresh timestamp t for the write event, puts
t into χ j, colouring it yellow or red, and changes Wp to New t v, simultaneously
with the physical update of p with v (see Figure 4.6). The importance of the step
shows in line 4, where we need to establish that t is placed into the logical order
after all the other finished or scanned events (i. e., dom(ho) ∪ scanned Ω ⊆ Ω

�

t).
This information is the most difficult part of the proof, but once established, it
merely propagates through the proof outline.

Why does this inclusion hold? From the definition, we know that register
appends t to the end of the list ζ (the clause ζ ′ = snoc ζ t in the definition of
register in Figure 4.6). Thus, after the execution of line 3, we know that for every
other timestamp s, s <ζ t. In particular, s 6= t, so it suffices to prove s Ω t.
We consider two cases: s ∈ dom(ho) and s ∈ scanned Ω. In the first case, by
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Invariant 4.10, s ∈ dom(τ). By freshness of t wrt. global history h (which includes
ho), we get τ(s) < t, and then the desired s Ω t follows from the definition of Ω.
In the second case, by definition of scanned , κ(s) = green. Since s <ζ t, the result
again follows by definition of Ω.

Still regarding line 4, we note that t ∈ dom(χ j) holds despite the interference
of other threads. This is ensured by the Invariant 4.9, because no other thread
but the writer for p, can modify Wp. Thus, this property will continue to hold in
lines 6 and 8.

In line 6, the writer state Wp is updated following the definition of the auxiliary
procedure check. The conjunct on dom(ho) ∪ scannedw ⊆ Ω

�

t propagates from
line 4, by monotonicity of Ω (Invariant 4.1). Similarly, in line 8, Wp is changed
following the definition of forward, and the the other conjunct propagates. Forward
further colours a number of timestamps green, but this is done in order to satisfy
the state space invariants from Section 4.3, and is not exposed in the proof of
write. Finally, in line 10, finalize moves t 7→ (p, v) from χ j to χ s, thus completing
the proof.

Proof outline for scan. Finally, the proof outline for is given in Figure 4.8.
Line 1 introduces the logical variable h to name the initial χ. Line 2 adds the
knowledge that Ss = SOff and Sx = Sy = False, i. e., that there are no other
scanners around, which is enforced by locking in our Coq files.

Line 3 is the first line of the code; it simply sets the scanner bit S, and the
auxiliaries Sx and Sy, following the definition of set. The conjunct h ⊆ χ follows
from monotonicity by Invariant 4.1. The first important property comes from the
lines 5 and 7. In these lines, clear sets the values of Sx and Sy, but, importantly,
also colours the events from h green, first colouring x-events, and then y-events.
This will be important at the end of the proof, where the fact that h is all green
will enable inferring the postcondition. Moreover, because green events are never
re-coloured, we propagate this property to subsequent lines without commentary.

The read from x in line 9, and from y in line 11, must return the last green, or
the yellow event of their pointer, if no values are forwarded in fx and fy , respectively.
This holds by Lemma 4.11, and is reflected by the conjuncts fwdLastGY x tx vx
and fwdLastGY x tx vy in line 12, where:

fwdLastGY p t v =̂ fwd p 7→ ⊥ =⇒ lastGY p t ∧ t 7→ (p, v) ∈ χ

The implication guard fwd p 7→ ⊥ will be stripped away in the future, if and when
the reads of forwarding pointers in lines 15 and 17 observe that no forwarding
values exist.

In line 13, the scanner unsets the bit S and records the ending time of the
scanner into the variable toff in line 14. The conjuncts fwdLastGY x tx vx and
fwdLastGY y ty vy from line 12 transfer to line 14 directly. This is so because set
does not change any colours. Moreover, any writes that may run concurrently
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1 {χ s = ∅ ∧ h ⊆ χ}
2 {χ s = ∅ ∧ Ss = SOff ∧ Sx = Sy = False ∧ h ⊆ χ}
3 〈S := true; set(true)〉;
4 {χ s = ∅ ∧ Ss = SOn ∧ Sx = Sy = False ∧ h ⊆ χ}
5 〈 fx :=⊥; clear(x)〉;
6 {χ s = ∅ ∧ Ss = SOn ∧ Sx = True ∧ Sy = False ∧ h ⊆ χ ∧ κ(dom(hx)) = green}
7 〈 fy :=⊥; clear(y)〉;
8 {χ s = ∅ ∧ Ss = SOn ∧ Sx = Sy = True ∧ h ⊆ χ ∧ κ(dom(h)) = green}
9 vx ← 〈read(x)〉;

10 {∃ tx. χ s = ∅ ∧ Ss = SOn ∧ Sx = Sy = True∧
h ⊆ χ ∧ κ(dom(h)) = green ∧ fwdLastGY x tx vx}

11 vy ← 〈read(y)〉;
12 {∃ tx ty. χ s = ∅ ∧ Ss = SOn ∧ Sx = Sy = True ∧ h ⊆ χ∧

κ(dom(h)) = green ∧ fwdLastGY x tx vx ∧ fwdLastGY x tx vy}
13 〈S := false; set(false)〉;
14 {∃ tx ty toff . χ s = ∅ ∧ Ss = SOff toff ∧ Sx = Sy = True ∧ h ⊆ χ∧

κ(dom(h)) = green ∧ fwdLastGY x tx vx ∧ fwdLastGY y ty vy}
15 ox ← 〈read(fx )〉;
16 { ∃ ty t′x toff . χ s = ∅ ∧ Ss = SOff toff ∧ Sx = Sy = True ∧ h ⊆ χ∧

κ(dom(h)) = green ∧ fwdLastGY y ty vy∧
lastGYHist x t′x (if r = ⊥ then vx else r)}

17 oy ← 〈read(fy)〉;
18 { ∃ t′x t′y toff . χ s = ∅ ∧ Ss = SOff toff ∧ Sx = Sy = True ∧ h ⊆ χ∧

κ(dom(h)) = green ∧ lastGYHist x t′x (if ox = ⊥ then vx else ox )∧
lastGYHist y t′y (if oy = ⊥ then vy else oy)}

19 rx ← if (ox 6= ⊥) then ox else vx ;

20 ry ← if (oy 6= ⊥) then oy else vy ;

21 { ∃ t′x t′y toff . χ s = ∅ ∧ Ss = SOff toff ∧ Sx = Sy = True ∧ h ⊆ χ∧
κ(dom(h)) = green ∧ lastGYHist x t′x rx ∧ lastGYHist y t′y ry}

22 〈 relink(rx , ry); return (rx , ry) 〉
23 { r.∃t. χ s = ∅ ∧ r = eval t Ω χ ∧ dom(h) ⊆ Ω ↓ t ∧ t ∈ scanned Ω}

Figure 4.8: Proof outline for scan.
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with this scan cannot invalidate the conjuncts. To see this, assume that we
had a concurrent write to x (reasoning is symmetric for y). Such a write

may add a new yellow timestamp s, but only if tx itself is the last green, in
accord with Invariant 4.4. In that case, tx remains the last green timestamp, and
fwdLastGY x tx vx remains valid. The concurrent write may change the colour of
s to green, by invoking forward (Figure 4.5, line 5), but then fx becomes non-⊥,
thus making fwdLastGY x tx vx hold trivially.

In lines 15 and 17, scan reads from the forwarding pointers fx and fy and
stores the obtained values into ox and oy, respectively. By Invariant 4.5, we know
that if ox 6= ⊥, there exists t′x s.t. t′x 7→ (x, ox) ∈ χ, and t′x is the last green or
yellow write event of χx. In case ox = ⊥, we know from the fwdLastGY conjunct
preceding the read from fx , that such last green or yellow event is exactly tx. The
consideration for fy is symmetric, giving us the assertion in line 18, where:

lastGYHist p t v =̂ lastGY p t ∧ t 7→ (p, v) ∈ χ

Next, line 19 merely names by rx the value of vx, if ox equals ⊥, and similarly
for ry in line 20, leading to line 21. Finally, on line 22, the method finishes by
invoking 〈 relink(rx , ry); return (rx , ry) 〉. Thus, it returns the selected snapshot
(rx, ry) and relinks the events so that the Ω justifies the choice of snapshots.

We prove that the final state satisfies the postcondition in line 23, by using
the main property of relink (Lemma 4.13). First, we pick t = maxζ(t

′
x, t
′
y). Then

r = eval t Ω χ holds, by the following argument. By Lemma 4.13.1, rx is the
value of the last green timestamp in χx. By Lemma 4.13.2, all the timestamps
below t are green, thus rx is the value of the last timestamp in χx that is smaller
or equal to t. By a symmetric argument, the same holds of ry. But then, the pair
r = (rx, ry) is the snapshot at t, i. e., equals eval t Ω χ.

The conjunct t ∈ scanned Ω is proved as follows. Unfolding the definition of
scanned , we need to show Ω ↓ t = ≤ζ ↓ t, and ∀s ∈ Ω ↓ t. κ(s) = green. The first
conjunct follows from Lemma 4.12. The second immediately follows from the first
by Lemma 4.13.2.

To establish dom(h) ⊆ Ω ↓ t, we proceed as follows. Let s ∈ dom(h). From line
21, we know κ(s) = green. Because t′x and t′y are last green (by ζ) or yellow events,
by Invariant 4.4 it must be s ≤ζ t′x, t′y, and thus s ≤ζ t. However, we already
showed that Ω ↓ t = ≤ζ ↓ t. Thus, s Ω t, finally establishing the postcondition.

4.9 Discussion

Comparison with linearizability, revisited As we argued in Section 4.3,
our specifications for the snapshot methods directly capture that the method
calls can be placed in a linear sequence, in a way that preserves the order of
non-overlapping calls. This is precisely what linearizability achieves as well, but
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by technically different means. We here discuss some similarities and differences
between our method and linearizability.

The first distinction is that linearizability is a property of a concurrent object,
whereas our specifications are ascribed to individual methods, as customary in
Hoare logic. This immediately enables us to use an of-the-shelf Hoare logic, such
as FCSL, for specification.

Second, linearizability draws its power from the connection to contextual
refinement (Filipovic et al. , 2010): one can substitute a potentially complex
method A in a larger context, by a simpler method B, to which A linearizes. In
our setting, such a property is enabled by a general substitution principle, which
says that programs with the same spec can be interchanged in a larger context,
without affecting the larger context’s proof. Moreover, contextual refinement
(and thus linearizability) is defined for general programs, without regard to their
preconditions and postconditions. However, it is often the case that the refinement
only holds if the substituted programs satisfy some Hoare logic spec. In this sense,
our setting is more expressive, since the substitution principle is given relative to
a Hoare logic spec.

Finally, while our specification of the snapshot methods are motivated by
linearizability, there is no requirement—and hence no proof—that an FCSL
specification implies linearizability. But this is a feature, rather than a bug. It
enables us to specify and combine, in one and the same logic, programs that
are linearizable, with those that are not. We refer to (Sergey et al. , 2016) for
examples of how to specify and verify non-linearizable programs in FCSL.

1 scan () : (A× A) {
2 (cx , vx )← read(x);

3 (cy , )← read(y);

5 ( , tx )← read(x);

5 if vx = tx

6 then return (cx , cy)

7 else scan (); }

Figure 4.9: scan using version numbers.

Alternative snapshot implementa-
tions. FCSL’s substitution principle
can be exploited further in an orthog-
onal way: it allows us to re-use the
specs for write and scan in Figure 4.4,
ascribing them to a different concur-
rent snapshot algorithm. For that mat-
ter, we re-visit the previous verifica-
tion in FCSL of the pair-snapshot al-
gorithm (Sergey et al. , 2015b). We
present only scan in Figure 4.9, as
write is trivial.

In this example, the snapshot struc-
ture consists of pointers x and y storing tuples (cx, vx) and (cy, vy), respectively.
cx and cy are the payload of x and y, whereas vx and vy are version numbers,
internal to the structure. Writes to x and y increment the version number, while
scan reads x, y and x again, in succession. Snapshot inconsistency is avoided by
restarting if the two version numbers of x differ. In the notation used throughout
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this chapter, the specification proved for scan in (Sergey et al. , 2015b) reads:

scan : {χ s = ∅} {∃t. χ′s = ∅ ∧ r = eval t χ′ ∧ dom(χ) ⊆ χ′ ↓ t}

This spec is indeed very similar to the one of scan in Figure 4.4, but exhibits that
the algorithm does not require dynamic modification to the event ordering. Thus,
by defining Ω to be the natural ordering on timestamps in the global history χ
(so that Ω′ ↓ t = χ′ ↓ t), and taking scanned Ω to be the set of all timestamps in
χ (so that t ∈ scanned Ω is trivially true and can be added to the postcondition
above), the above spec directly weakens into that of Figure 4.4. Since client proofs
are developed in FCSL out of the specs, and not the code of programs, we can
substitute different implementations of snapshot algorithms in clients, without
disturbing the clients’ proofs. This is akin to the property that programs that
linearize to the same sequential code are interchangeable in clients.

Scalability of the Linking in Time approach. Even when we have presented
here, only one formalized case study, we can distill how the proposed verification
technique of relinking in time would scale to other more complex data structures.
As we have mentioned throughout this chapter, the crux of our technique is the
ability to change atomically the apparent order of past events as long as they satisfy
the invariants of the data-structure and the real-time order of non-overlapping
events inherited from linearizability. An informal taxonomy of the auxiliary code
methods can be given, dividing them into three families according on how they
relate with the logical ordering of events:

register Auxiliary code methods whose role is to witness the existence of a new
atomic event. In Jayanti’s snapshot case, we have only one: register. This
needs not be the start of the method, but rather the atomic moment when
it becomes visible to the environment: the pointer is written, the value is
enqueued, dequeued, pushed, popped, etc..

forward This class of auxiliary code methods update the auxiliary state in order
to reflect certain dynamic events. Their purpose is to contribute/refine the
evidence the relink method needs to assess whether the order of events is
correct, and if it is not the case, how to fix it. In our case study: checkS,
forward, finalize, set, and clear.

relink auxiliary code methods which change the order to justify the correctness
of a result. In our case study relink implements such behavior.

The concurrent resource we presented in this chapter for Jayanti’s snapshot
algorithm considers only write events in the history, and computes snapshots
by evaluating scanned segments of the history. Thus, there could only be one
register -class auxiliary method. If we had encoded scan sevents as well—a needless
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and painful exercise, as per our argument above—there would be a another method
of this kind. In a similar way, it is easy to envision that data-structures with
more than one effectful method like queues or stacks, will define two auxiliary
state code register -like operations of this class, one per thread. Or at least, two
instances of such.

As for relink, in the case of a snapshot data structure we argue that it is
optimal to have only one of such methods, and place it in the scan method
before returning the snapshot, just as we have done in this paper. Checking the
correctness of this auxiliary code and, the stability of its specification and proving
it satisfies the 2-step invariants defined in Invariant 4.1 constitutes a significant
part of the proof burden in our mechanization. If we had gone for a design in
which a relink -like auxiliary code operation was happening, for instance, together
with each of the reading loops in scan, we would have increased significantly the
size and complexity of our mechanization.

We have identified a potential candidates for applying our technique in the
future, such as the TS stack (Dodds et al. , 2015) and the ever ubiquitous
Herlihy–Wing (Herlihy & Wing, 1990; Schellhorn et al. , 2012; Henzinger et al. ,
2013a; Khyzha et al. , 2017) queue. Our preliminary understanding is that our
approach would be to add one relink auxiliary code operation in those cases as
well: respectively at the end of the the pop and dequeue methods. Of course, we
do not have any evidence to claim this hints to a general rule. Nor we believe it
should be the case. A tailored suit fits better than a one-size-fits-all jacket.

Relation to Jayanti’s original proof. Finally, we close this section by noting
that our proof of Jayanti’s algorithm seems very different from Jayanti’s original
proof. Jayanti relies on so-called forwarding principles, as a key property of the
proof. For example, Jayanti’s First Forwarding Principle says (in paraphrase) that
if scan misses the value of a concurrent write through lines 10–11 of Figure 4.1, but
the write terminates before the scanner goes through line 12 (the linearization point
of scan), then the scanner will catch the value in the forwarding pointers through
lines 13–14. Instead of forwarding principles, we rely on colors to algorithmically
construct the status of each write event as it progresses through time, and express
our assertions using formal logic. For example, though we did not use the First
Forwarding Principle, we nevertheless can express a similar property, whose proof
follows from the auxiliary state Invariants introduced in Section 4.5:

Proposition 4.19. If Ss = SOff toff and Sx = Sy = True—i.e., the scanner is in
lines 13–16 and it has unset S in line 12 at time toff—then: ∀t ∈ χ. t ≤ τ(t) <
toff =⇒ κ(t) = green.
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4.10 Related work

Program logics for linearizability. The proof method for establishing
linearizability of concurrent objects based on the notion of linearization points
has been presented in the original paper by Herlihy and Wing (Herlihy & Wing,
1990). The first Hoare-style logic, employing this method for compositional proofs
of linearizability was introduced in Vafeiadis’ PhD thesis (Vafeiadis et al. , 2006;
Vafeiadis, 2008). However, that logic, while being inspired by the combination of
Rely-Guarantee reasoning and Concurrent Separation logic (Vafeiadis & Parkinson,
2007) with syntactic treatment of linearization points (Vafeiadis et al. , 2006), did
not connect reasoning about linearizability to the verification of client programs
that make use of linearizable objects in a concurrent environment.

Both these shortcomings were addressed in more recent works on program
logics for linearizability (Liang & Feng, 2013; Khyzha et al. , 2016), or, equivalently,
observational refinement (Filipovic et al. , 2010; Turon et al. , 2013a). These works
provided semantically sound methodologies for verifying refinement of concurrent
objects, by encoding atomic commands as resources (sometimes encoded via a
more general notion of tokens (Khyzha et al. , 2016)) directly into a Hoare logic.
Moreover, the logics (Liang & Feng, 2013; Turon et al. , 2013a) allowed one to
give the objects standard Hoare-style specifications. However, in the works (Liang
& Feng, 2013; Turon et al. , 2013a), these two properties (i. e., linearizability of
a data structure and validity of its Hoare-style spec) are established separately,
thus doubling the proving effort. That is, in those logics, provided a proof of
linearizability for a concurrent data structure, manifested by a spec that suitably
handles a command-as-resource, one should then devise a declarative specification
that exhibits temporal and spatial aspects of executions (akin to our history-based
specs from Figure 4.4), required for verifying the client code.

Importantly, in those logics, determining the linearization order of a procedure
is tied with that procedure “running” the command-as-resource within its execution
span. This makes it difficult to verify programs where the procedure terminates
before the order is decided on, such as write operation in Jayanti’s snapshot. The
problem may be overcome by extending the scope of prophecy variables (Abadi
& Lamport, 1988) or speculations beyond the body of the specified procedure.
However, to the best of our knowledge, this has not been done yet.

Hoare-style specifications as an alternative to linearizability. A se-
ries of recent Hoare logics focus on specifying concurrent behaviour without
resorting to linearizability (Sergey et al. , 2015b, 2016; Svendsen & Birkedal, 2014;
da Rocha Pinto et al. , 2014; Jung et al. , 2015). The developments presented
in this chapter continues the same line of thinking, building on (Sergey et al.
, 2015b), which explored patterns of assigning Hoare-style specifications with
self/other auxiliary histories to concurrent objects, including higher-order ones
(e.g., flat combiner (Hendler et al. , 2010)), and non-linearizable ones (Sergey
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et al. , 2016) in FCSL (Nanevski et al. , 2014a), but has not considered non-local,
future-dependent linearization points, as required by Jayanti’s algorithm.

Alternative logics, such as Iris (Jung et al. , 2015, 2016) and iCAP (Svendsen
& Birkedal, 2014), employ the idea of “ghost callbacks” (Jacobs & Piessens, 2011),
to identify precisely the point in code when the callback should be invoked. Such
a program point essentially corresponds to a local linearization point. Similarly
to the logical linearizability proofs, in the presence of future-dependent LPs, this
method would require speculating about possible future execution of the callback,
just as commented above, but that requires changes to these logics’ metatheory,
in order to support speculations, that have not been carried out yet.

The specification style of TaDA (da Rocha Pinto et al. , 2014) is closer to ours
in the sense that it employs atomic tracking resources, that are reminiscent of our
history entries. However, the metatheory of TaDA does not support ownership
transfer of the atomic tracking resources, which is crucial for verifying algorithms
with non-local linearization points. As demonstrated by the technique introduced
in this chapter and also previous works (Sergey et al. , 2015b, 2016), history
entries can be subject to ownership transfer, just like any other resources.

The key novelty of the current work with respect to previous results on
Hoare logics with histories (Fu et al. , 2010; Liang & Feng, 2013; Gotsman
et al. , 2013; Bell et al. , 2010; Sergey et al. , 2015b; Hemed et al. , 2015)
is the idea of representing logical histories as auxiliary state, thus enabling
constructive reasoning, by relinking, about dynamically changing linearization
points. Since relinking is just a manipulation of otherwise standard auxiliary
state, we were able to use FCSL off the shelf, with no extensions to its metatheory.
Furthermore, we expect to be able to use FCSL’s higher-order features to reason
about higher-order (i. e., parameterized by another data structure) snapshot-based
constructions (Petrank & Timnat, 2013). Related to our result, O’Hearn et al.
have shown how to employ history-based reasoning and Hoare-style logic to non-
constructively prove the existence of linearization points for concurrent objects out
of the data structure invariants (O’Hearn et al. , 2010); this result is known as the
Hindsight Lemma. The reasoning principle presented in this work generalizes that
idea, since the Hindsight Lemma is only applicable to “pure” concurrent methods
(e. g., a concurrent set’s contains (Heller et al. , 2006)) that do not influence the
position of other threads’ linearization points. In contrast, our history relinking
handles such cases, as showcased by Jayanti’s construction, where the linearization
point of write depends on the (future) outcome of scan.

Semantic proofs of linearizability. There has been a long line of research
on establishing linearizability using forward-backwards simulations (Schellhorn
et al. , 2012; Colvin et al. , 2006, 2005). These proofs usually require a complex
simulation argument and are not modular, because they require reasoning about
the entire data structure implementation, with all its methods, as a monolithic
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state-transition system.

Recent works (Henzinger et al. , 2013a; Chakraborty et al. , 2015; Dodds
et al. , 2015) describe methods for establishing linearizability of sophisticated
implementations (such as the Herlihy–Wing queue (Herlihy & Wing, 1990) or the
time-stamped stack (Dodds et al. , 2015)) in a modular way, via aspect-oriented
proofs. This methodology requires devising, for each class of objects (e. g., queues
or stacks), a set of specification-specific conditions, called aspects, characterizing
the observed executions, and then showing that establishing such properties
implies its linearizability. This approach circumvents the challenge of reasoning
about future-dependent linearization points, at the expense of (a) developing
suitable aspects for each new data structure class and proving the corresponding
“aspect theorem”, and (b) verifying the aspects for a specific implementation. Even
though some of the aspects have been mechanized and proved adequate (Dodds
et al. , 2015), currently, we are not aware of such aspects for snapshots.

Our approach is based on program logics and the use of STSs to describe
the state-space of concurrent objects. Modular reasoning is achieved by means
of separately proving properties of specific STS transitions, and then establish-
ing specifications of programs, composed out of well-defined atomic commands,
following the transitions, and respecting the STS invariants.

Proving linearizability with forward simulations In a recent work de-
veloped concurrently with ours, (Bouajjani et al. , 2017) show that forward
simulations suffice for two classes of data structures with non-fixed linearization
points: (1) queues similar to the Herlihy–Wing queue which have a fixed dequeue

method and a non-fixed future dependent enqueue method, and (2) stacks similar
to the time-stamped stack with a pop method with fix commitment points and
a push method with non-fixed ones. Jayanti’s snapshot method fits a priori in
this dual pattern of having one method with a fix linearization point (scan) and
another with a future-dependent one (write). However, the authors have not
consider snapshot data-structures. Thus, it would be interesting to investigate a
relationship between their method and our Linking in Time technique.

Proving linearizability using partial orders. Concurrently with us,
Khyzha et al. (Khyzha et al. , 2017) have developed a proof method for proving
linearizability, which can handle certain class of data structures with similar future
dependent behaviour. The method works by introducing a partial order of events
for the data structure as auxiliary state, which in turn defines the abstract histories
used for satisfying the sequential specification of the data structure. Relations are
added to this partial order at commitment points of the instrumented methods,
which the verifier has to identify.

The ultimate goal of this method is to assert the linearizability of a concurrent
data structure. As we have shown in Section 4.4, FCSL goes beyond as it provides
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a logical framework to carry out formal proofs about the correctness of a concurrent
data structure and its clients.

The proof technique also tracks the ordering of events differently from ours.
Where we keep a single witness for the current total ordering of events at all
stages of execution, their technique requires keeping many witnesses. Their main
theorem requires a proof that all linearizations of the abstract histories—i. e.
all possible linear extensions of the partial order into a total order—satisfy the
sequential specification of the data structure.

Through personal communication we learned that the technique cannot apply,
for instance, to the verification of the time-stamped (TS) stack (Dodds et al. ,
2015). This is because a partial order does not suffice to characterize the abstract
histories required to verify the data structure. In contrast, given the flexibility
of FCSL in designing and reasoning with auxiliary state, we believe that our
technique would not suffer such shortcomings.

4.11 Summary

This chapter illustrates a new approach allowing one to specify that the execution
history of a concurrent data structure can be seen as a sequence of atomic events.
The approach is thus similar in its goals to linearizability, but is carried out
exclusively using a separation-style logic to uniformly represent the state and time
aspects of the data structure and its methods.

Reasoning about time using separation logic is very effective, as it naturally
supports dynamic and in-place updates to the temporal ordering of events, much
as separation logic supports dynamic and in-place updates of spatially linked lists.
The need to modify the ordering of events frequently appears in linearizability
proofs, and has been known to be tricky, especially when the order of a termi-
nated event depends on the future. In our approach, the modification becomes
a conceptually simple manipulation of auxiliary state of histories of coloured
timestamps.

We have carried out and mechanized our proof of Jayanti’s algorithm (Jayanti,
2005) in FCSL, without needing any additions to the logic. Such development,
together with the fact that FCSL has previously been used to verify a number of
non-trivial concurrent structures (Sergey et al. , 2015b,a, 2016), gives us confidence
that the approach will be applicable, with minor modifications, to other structures
whose linearizations exhibit dynamic dependence on the future (Dodds et al. ,
2015; Morrison & Afek, 2013; Hoffman et al. , 2007).

One modification that we envision will be in the design of the data type of
time-stamped histories. In the current paper, a history of the snapshot object
needs to keep only the write events, but not the scan events. In contrast, in
the case of stacks, a history would need to keep both events for push and pop
operations. But in FCSL, histories are a user-defined concept, which is not
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hardwired into the semantics of the logic. Thus, the user can choose any particular
notion of history, as long as it satisfies the properties of a Partial Commutative
Monoid (Ley-Wild & Nanevski, 2013; Nanevski et al. , 2014a). Such a history can
track pushes and pops, or any other auxiliary notion that may be required, such
as, e. g., specific ordering constraints on the events.
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5
Conclusions & Future Work

This thesis presents two advances in the field of formal verification of stateful
computer programs in the presence of higher-order control effects. In this chapter,
we revisit these contributions and discuss briefly potential lines of future research
and open questions.

5.1 Conclusions

The first contribution of this thesis is a higher-order type theory, HTTcc, whose
aim is the verification of higher-order stateful programs featuring call/cc and
abort control operators. The implemented theory, presented in Chapter 2, sup-
ports mutable state in the style of Separation logic, and, to the best of our
knowledge, is the first Hoare logic or type theory to support the combination of
higher-order functions, dynamic, mutable state and higher-order control operators.
Moreover, HTTcc features algebraic control operators, initially introduced by
Jaskelioff (Jaskelioff, 2009), which we here adapt to persistent state, i. e. without
rollbacks. We have observed through experimentation that the use of algebraic
control operators entails the need for less user-provided program annotations,
when compared to the case of traditional, non-algebraic, control operators.

Another interesting feature of this work is the use of dependent record types—
specifically, the Σ•SKA type—to capture closures (potentially capturing or abort-
ing to execution contexts) which can be returned and executed later. This, together
with the fact that our shallow embedding in Coq allows for higher-order assertions
about such closures, enables HTTcc to reason about backwards or re-entrant jumps.
The inc3 example in Section 2.2 and ping–pong in Section 2.6 illustrate this
phenomenon. This is a fundamental contribution of HTTcc, and it is unlike most
existing Hoare-style logics targeted at the verification of imperative programs
with first order jumps (Arbib & Alagic, 1979; Clint & Hoare, 1972; Audebaud &
Zucca, 1999), which only allow for exit jumps. Moreover, this is also unique with
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regard to previously existing pure—i. e. without state—higher-order logics for
higher-order control flow (Crolard & Polonowski, 2012; Berger, 2009).

Following the tradition of previous Hoare-Type theories, we have implemented
HTTcc as a domain specific language in Coq, and verified a number of characteristic
example programs that use callcc (Delbianco & Nanevski, 2017). A selected
survey of this examples were presented in Section 2.6 and several more can be
found in the Coq sources.

The second contribution of this thesis is Linking in Time, a new approach
allowing one to specify that the execution history of a concurrent data structure
can be seen as a sequence of atomic events. The approach is thus similar in
its goals to linearizability, but is carried out exclusively using a separation-style
logic to uniformly represent the state and time aspects of the data structure
and its methods. Reasoning about time using separation logic is very effective,
as it naturally supports dynamic and in-place updates to the temporal ordering
of events, much as separation logic supports dynamic and in-place updates of
spatially linked lists. The need to modify the ordering of events frequently appears
in linearizability proofs, and has been known to be tricky, especially when the order
of a terminated event depends on the future. In our approach, the modification
becomes a conceptually simple manipulation of auxiliary state of histories of
coloured timestamps.

We have illustrated the approach on a snapshot algorithm by Jayanti (Jayanti,
2005), whose linearizability proof exhibits exactly such dependence on the future.
We have carried out the mechanization of the technique’s infrastructure as well as
the proof of correctness of Jayanti’s snapshot construction off-the-shelf in FCSL,
without needing any additions to the logic. This is an considerable advantage
with regard to previously existing methods for Hoare-style verification of this
class of data structures (Liang & Feng, 2013; Turon et al. , 2013a), which require
special meta-theoretical devices e. g. prophecy variables (Abadi & Lamport, 1988).
To the best of our knowledge, this establishes FCSL as the first program logic
capable of mechanically proving full functional correctness of data structures
whose linearizability proofs exhibit non-locality and dependence on future and
non-regional events.

5.2 Open Questions & Future Work

HTTcc As we have mentioned elsewhere, HTTcc is the first high-order separation-
like logic for a language with higher-order control effects and dynamic mutable
state. As it usually happens with any first thing, there is still plenty to be
done. Together with my co-authors we have discussed the possibility of extending
this work from the meta-theoretical to the practical, all the way through the
(re-)implementation of (successors of) HTTcc: there are practical improvements
to be carried out in the implementation, many possible extensions of HTTcc, and
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also the applications of the logic to other verification domains.

When it comes to extensions of, or improvements to, HTTcc’s meta-theory,
there are two possible and orthogonal directions for future work. A first axis
would correspond to state-reasoning. As we have mentioned before in Chapter 2,
the state in our logic is given by a first-order heap. This is a consequence of
the implementation of the heap data-type—basically, a finite map from non-null
addresses (N+) to values of dynamic type, i. e. values of type Σ (X:Type). X.
Given this model, it is impossible to accommodate for a higher-order heap in the
current implementation of HTTcc. As we have discussed previously on Chapter 2,
attempting to store a value of type SKA or KontA into the heap would raise
a universe inconsistency error in Coq. A traditional way of circumventing this
issue has been to restrict the embedding of the assertion logic (Ni & Shao, 2006;
Gotsman et al. , 2007; Chlipala, 2013), by encoding the small datatypes which
can be allocated in the heap. We believe, however, that this is not a good idea for
HTTcc, as it would forbid the use of high-order specifications as the ones needed
for describing the behaviour of backwards jumps, as we have done for inc3 in
Figure 2.1, and for ping–pong in Figure 2.8.

There are two alternatives moving forward: either to design and implement an
impredicative version of HTTcc, following the previous work done for HTTs (Svend-
sen et al. , 2011; Petersen et al. , 2008); or to look further into the recent1 develop-
ments of universe polymorphism in Coq (Sozeau & Tabareau, 2014; The Coq De-
velopment Team, 2016) that, in theory could allow for this sort of type instances.
The extension of HTTcc with high-order state, would enable, for instance, the
implementation and verification of coroutines and other concurrency primitives à
la CML (Reppy, 1999), i. e. implemented in terms of callcc and abort keeping a
queue of continuations as a scheduler for pending threads. However, this would
not be a straight-forward task: it does not suffice to be able to implement the
concurrency primitives using call/cc in HTTcc, one would have to come with
a sensible specification to the pending coroutines. How would one specify re-
entrance? If the user of the library—i. e. client code—is allowed to yield, then
how would the specs acknowledge the interference from the environment when
the client resumes control?

Moreover, it is natural to desire to extend HTTcc to cope with delimited
or composable (Felleisen et al. , 1987, 1988; Ariola et al. , 2009; Wadler, 1994)
continuations. To the best of our knowledge, there is no verification framework that
can reason with delimited control effects and dynamic mutable state. A first hurdle
would be reconcile models for delimited control (which are non-monadic (Wadler,
1994)) with the underlying foundations of Hoare Type Theory—that is, indexed
Hoare monads.

1At least, more recent than the original designs of both HTTcc and FCSL.
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Linking in Time The immediate and obvious future work here is applying
the lightweight technique described in Chapter 4 to further data structures with
non-trivial linearization points. One modification that we envision will be in the
design of the data type of time-stamped histories. In the current implementation
of the concurrent resource for Jayanti’s snapshot construction, a history of the
snapshot object needs to keep only the write events, but not the scan events.
In contrast, in the case of other data structures such as stacks, a history would
need to keep both events for push and pop operations. But in FCSL, histories
are a user-defined concept, which is not hardwired into the semantics of the logic.
Thus, the user can choose any particular notion of history, as long as it satisfies
the properties of a Partial Commutative Monoid (Ley-Wild & Nanevski, 2013;
Nanevski et al. , 2014a). Such a history can track pushes and pops, or any other
auxiliary notion that may be required, such as, e. g., specific ordering constraints
on the events.

That said, we have identified several linearizable data structures whose lineariza-
tion points exhibit similar future dependent or non-regional behaviour (Herlihy &
Wing, 1990; Dodds et al. , 2015; Morrison & Afek, 2013; Hoffman et al. , 2007),
and we are looking forwards to verify them in FCSL by applying the technique
introduced in this thesis. The Herlihy-Wing queue (Herlihy & Wing, 1990) is,
perhaps, the most immediately obvious of them: this is a paradigmatic case
of a data-structure with non-fixed linearization point, and it has become a 101
example for introducing a new logic or technique for proving linearizability for
such a class of data structures (Schellhorn et al. , 2012; Henzinger et al. , 2013a;
Khyzha et al. , 2017). At a first glance, the instrumentation of the algorithm
and the proof would be structured in similar way to that of Jayanti’s snapshot
construction: enqueue and dequeue events would be registered at the beginning
of their respective methods, and a atomic relink ghost-code operation would be
added at the end of the dequeue method in order to fix the order when dequeue
succeeds, by changing the order of conflicting pending enqueues.

Beyond Linearizability As we have mentioned before, Linearizability has
become the golden standard by which concurrent objects are designed, specified
and proven correct. However, designing efficient concurrent objects often requires
abandoning the standard specification technique of linearizability in favour of more
relaxed correctness conditions. In order to reason about such objects, several novel
conditions have been developed: concurrency-aware linearizability (CAL) (?),
quiescent consistency (QC) (Aspnes et al. , 1994; Derrick et al. , 2014), quasi-
linearizability (QL) (Afek et al. , 2010), quantitative relaxation (Henzinger et al. ,
2013b), quantitative quiescent consistency (QQC) (Jagadeesan & Riely, 2014), and
local linearizability (Haas et al. , 2016), to name a few. However, this explosion
of criteria is not satisfactory, especially when each of them require a specific logic
or proof method to reason with them.

148



Chapter 5. Conclusions & Future Work 149

Instead, a radically different approach would be to use the general design idea
behind the work presented in Chapter 4: encoding the consistency/correctness
criteria and its verification through the invariants and operations of a FCSL
concurrent resource. Our aim is to show that, the to perform the verification of
different data structures in a powerful and unified setting for Hoare-style reasoning,
rather than having to design, implement, and prove correct yet another new logic
for a small class of concurrent objects that extend beyond the boundaries of
linearizability reasoning. Moreover, one could devote the effort to prove interesting
properties about complex clients.

Consequently, we have already done some steps in this regard, by verifying
non-linearizable concurrent objects in FCSL (Sergey et al. , 2016). In that work, we
present the verification of two non-linearizable concurrent objects and their clients
in FCSL, which have so far been specified only by non-standard conditions of
concurrency-aware linearizability, quiescent, and quantitative quiescent consistency.
In the future, we look forwards to extend this approach to other history-based
correctness criteria, such as the ones mentioned above.

FCSL and fork/join concurrency In FCSL, concurrency is introduced by
means of the parallel composition operator ||, or par. Given two programs
p1 and p2, par composes them concurrently, creating a new program p1 || p2
where resources are shared among two threads, with p1 and p2 potentially racing
for a shared resource. This syntactic, well-bracketed approach to introducing
concurrency in a language is preferred from a logic design perspective because it
favours reasoning inductively and fosters modular reasoning. However, in most
real-world concurrent programming environments (Herlihy & Shavit, 2008; Raynal,
2013; Butenhof, 1997), threads are spawned dynamically using fork primitives.
This practice enables more patterns for concurrent programming than ||, but
also hinders the modular verification of programs. An immediate future research
direction is to build upon FCSL in order to develop new logics that can tackle the
modular verification of the unstructured fork/join primitives present in massively
used libraries such as POSIX threads (a. k. a. pthreads) (Butenhof, 1997).

Several CSL-like program logics have dealt with fork/join concurrency, achiev-
ing different degrees of expressive power when it comes to which programs can be
forked, and how are they joined. Some logics support reasoning about storable,
yet first-order threads (Gotsman et al. , 2007; Dodds et al. , 2009), others restrict
a priori the thread-structure of the clients (Jacobs & Piessens, 2011), or some
of them deal only with fork primitives (Jung et al. , 2015, 2016). We believe
that, by extending FCSL notion of concurrent resources in order to be able to
identify each thread’s specific contributions, we could develop a logic that truly
implements fork/join concurrency in a thread-modular manner, and that can
also verify unstructured forking and joining patterns such as revisions and isolation
types (Burckhardt et al. , 2010; Leijen et al. , 2011).
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Free/Algebraic Hoare Type Theories Traditionally, all existing Hoare Type
Theories—including those presented in this thesis—have been implemented mono-
lithically, i. e. giving a unique denotational semantics definition for the SK type in
Chapter 2 or the FCSL triples {P}e{Q}@C in Part II. An open research question
is how to combine different HTTs to develop new ones, akin to the work it has
been carried out in the computational effects community about combining effects.
Even when monads have been successfully used to give semantics to computa-
tional effects for quite some time, monads do not compose well and therefore
combining monadic effects modularly has been an open question for some time.
Several alternatives have been proposed through time to solve this issue, with
monad transformers (Liang et al. , 1995) being the established way to program
with combined monads in Haskell. A more recent trend towards user definable
effects is to consider algebraic effects (Plotkin & Power, 2003, 2002; Jaskelioff,
2009) or extensible effects (Kiselyov et al. , 2013; Brady, 2013b), that is, effects
whose denotational definitions arise from their operations. Ahman et al. have
done the first steps in this regard for Dijkstra monads and F* (Ahman et al. ,
2017), but there is no similar precedent for HTTs. A starting point would be
to study the categorical models of HTT by Jacobs (Jacobs, 2015) and look into
how to define proper combinations or compositions in this setting following the
techniques mentioned above. Perhaps, it would be however more interesting to
consider designing HTTs on top of—or inspired from those of—existing extensible
effects type systems, such as those provided by Eff (Bauer & Pretnar, 2015) and
Idris (Brady, 2013a,b).

Bridging the gap This thesis presents two independent contributions. We
believe there are several worthy interconnections to pursue in order to build bridges
between them. For example, it would be worthwhile to combine HTTcc higher-
order control features with a FCSL-like notion of subjective state to develop logics
based on other models of concurrency such as coroutines (Conway, 1963; Abadi &
Plotkin, 2009) or futures (Flanagan & Felleisen, 1995, 1999) A future represents
the result of an asynchronous computation which cannot be accessed until is
completion. Methods are provided to check if the computation is complete, to
wait for its completion, and to retrieve the result of the computation. Coroutines
are language primitives that enable cooperation between asynchronous, resumable
threads. Given it is possible to implement these concurrency models in a setting
with continuations and higher-order store, i.e. one where computations can be
stored in the heap, designing a programming logic for such features would be a
natural extension of the work proposed. Moreover, it would be a suitable bridge
between the two pillars of this thesis: Hoare-style reasoning for continuations and
shared memory concurrency.
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